Block-ciphers modes of operations provide a way of encrypting arbitrary-length messages. Unless stated differently, we consider block ciphers of length n and assume messages to be of length a multiple of n. We recall three of the most common modes*.

Additionaly, the CBC* mode aims to tackle the inherent sequentiality of CBC mode. For a message (m_{1}, \cdots, m_{t}) made of $t \geqslant 2$ blocs the corresponding ciphertext is $\left(I V, c_{1}, \cdots, c_{t}\right)$ where $\left\{c_{i}=E_{K}\left(s_{i}\right)\right\}_{i}, s_{0}=I V$ and $\left\{s_{i+1}=s_{i} \oplus m_{i+1}\right\}_{i}$.

Another important result we recall for this tutorial is the birthday paradox.
Theorem I For S a finite set of cardinality m, the probability $p(n)$ that a collision occurs when sampling n elements at random from S is $p(n)=1-\frac{m!}{(m-n)!} \cdot \frac{1}{m^{n}}$. It verifies $p(n) \geqslant 1-e^{-n(n-1) / 2 m}$. In particular, for $(n-1) \geqslant$ $\sqrt{2 \ln (2) m}$ we have $p(n) \geqslant 1 / 2$.

Attacking modes

- Question I. Show that ECB mode is not IND-CPA.
- Question 2. Show that CBC* mode is not IND-CPA.
- Question 3. Show that CTR mode does not provide indistinguishability security for long messages. Can we still state that CTR mode is IND-CPA secure?
- Question 4. Show that CBC mode does not provide indistinguishability security for long messages neither.
* Question 5. Assuming blockciphers working over 64bits, what should be the size of the messages so that the attacks of the questions 3 and 4 succeed with probability greater than $1 / 2$?

Multiple modes

Multiple modes of operation consists in concatenating modes of operations. For example, the $\mathrm{ECB} \mid \mathrm{CBC}$ notation refers to the mode where the output of the ECB mode is the input of the CBC mode. In this exercise, we consider block cipher of length n and of key length l. We assume $n>l$ and that init values IV are known by the adversary.

We first mount a chosen plaintext attack against $\mathrm{ECB}|\mathrm{ECB}| \mathrm{CBC}^{-1}$. The plaintext P we choose is the concatenation of three n-bits blocks such that $P=(A, A, B)$. The three blocks of the corresponding ciphertexts are denoted $\left(C_{1}, C_{2}, C_{3}\right)$.

- Question 6. Represent the multiple mode, with its intermediate values $A^{\prime}, A^{\prime \prime}, B^{\prime}$ and $B^{\prime \prime}$.
- Question 7. Find a relation between $A^{\prime \prime}, k_{3}, I V$ and C_{1}. Find another relation between $A^{\prime \prime}, I V, C_{1}$ and C_{2}. Deduce a relation between $k_{3}, I V, C_{1}$ and C_{2}.

[^0]- Question 8. Deduce an attack which recover k_{3}. How to recover k_{1} and k_{2} from there? What is the complexity of the whole attack?

We then mount a chosen ciphertext attack against the $\mathrm{CBC}\left|\mathrm{CBC}^{-1}\right| \mathrm{CBC}^{-1}$ mode. We further assume that $I V_{2}$ can be programmed (other initial values are fixed and known from the adversary). Consider the following algorithm:

```
                                    Procedure SearchCollision
\mathbf{:}}i\leftarrow
2: Repeat:
3: Choose }\mp@subsup{C}{1}{(i)}\mathrm{ and IV (i) at random
4: }\quad\mp@subsup{C}{2}{(i)}\leftarrowI\mp@subsup{V}{2}{(i)
5: Obtain and store }\mp@subsup{P}{1}{(i)}\mathrm{ and }\mp@subsup{P}{2}{(i)};i\leftarrowi+1
6: until P
```

Question 9. Give an approximation of the running time of the former algorithm.
Question 10. Show that if $P_{1}^{(i)}=P_{1}^{(j)}$, then $P_{2}^{(i)}=P_{2}^{(j)}$.
\star Question II. Find a relation between $I V_{2}^{(i)}, I V_{2}^{(j)}, k_{3}, I V_{3}, C_{1}^{(i)}$ and $C_{1}^{(j)}$ equivalent to $P_{1}^{(i)}=P_{1}^{(j)}$. Deduce an attack that recover k_{3}.

Padding Oracle attack over CBC

A plaintext is not likely to be exactly of length a multiple of the block size. To bypass this problem, one could use padding: the PKCS_{7} standard states that the value to pad is the number of bytes that are required. For example, "Hello World" will become "Hello World $\backslash s \backslash s \backslash s \backslash s \backslash s$ " to fit 8 -bytes ciphers. We are given an oracle \mathcal{O} Padding that, given a ciphertext c outputs T iff the padding of the corresponding plaintext is correct (ie. if it ends with $i " \backslash i^{\prime \prime}$ symbols).

Let $C=\left(C_{1}, \cdots, C_{N}\right)$ be an intercepted ciphertext. We first focus on the decryption of C_{N}, the last block of C. Let $C^{\prime}=\left(r_{1}, \cdots, r_{n}\right) \| C_{N}$ be a two-blocks long (possibly meaningless) ciphertext forged by the adversary for r_{i} 's of their choice. Let $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ be the corresponding plaintext.

- Question 12. Give a relation between $P_{2}^{\prime}, C_{N-1},\left(r_{1}, \cdots, r_{n}\right)$ and P_{N} the last block of the plaintext corresponding to C.
- Question 13. Assuming that $P_{2}^{\prime}[n-1] \neq \backslash 2$, explain bow one can recover $P_{N}[n]$ using $\mathcal{O}^{\text {Padding. How can extra queries }}$ to \mathcal{O} Padding circomvent the need for this assumption?
- Question 14. Show how to set $P_{2}^{\prime}[n]$ to $\backslash 2$, and use it to recover $P_{N}[n-1]$. After explaining why, you may forget about the subtely bighlighted in the previous question. Deduce how to recover P_{N} entirely.
- Question 15. Can we recover all the plaintext blocks?

[^0]: *Figures from Introdctuion to Modern Cryptography, KatZ \& Lindell

