Answer all > questions before looking at * questions.

Block-ciphers modes of operations provide a way of encrypting arbitrary-length messages. Unless stated differently, we consider block ciphers of length n and assume messages to be of length a multiple of n. We recall three of the most common modes^{*}.

Additionaly, the CBC* mode aims to tackle the inherent sequentiality of CBC mode. For a message (m_1, \dots, m_t) made of $t \ge 2$ blocs the corresponding ciphertext is (IV, c_1, \dots, c_t) where $\{c_i = E_K(s_i)\}_i$, $s_0 = IV$ and $\{s_{i+1} = s_i \oplus m_{i+1}\}_i$. Another important result we recall for this tutorial is the *birthday paradox*.

Theorem 1 For S a finite set of cardinality m, the probability p(n) that a collision occurs when sampling n elements at random from S is $p(n) = 1 - \frac{m!}{(m-n)!} \cdot \frac{1}{m^n}$. It verifies $p(n) \ge 1 - e^{-n(n-1)/2m}$. In particular, for $(n-1) \ge \sqrt{2\ln(2)m}$ we have $p(n) \ge 1/2$.

Attacking modes

▶ Question 1. Show that ECB mode is not IND-CPA.

▶ Question 2. Show that CBC* mode is not IND-CPA.

▶ Question 3. Show that CTR mode does not provide indistinguishability security for long messages. Can we still state that CTR mode is IND-CPA secure?

▶ Question 4. Show that CBC mode does not provide indistinguishability security for long messages neither.

\star Question 5. Assuming blockciphers working over 64bits, what should be the size of the messages so that the attacks of the questions 3 and 4 succeed with probability greater than 1/2?

Multiple modes

Multiple modes of operation consists in concatenating modes of operations. For example, the ECB|CBC notation refers to the mode where the output of the ECB mode is the input of the CBC mode. In this exercise, we consider block cipher of length n and of key length l. We assume n > l and that init values IV are known by the adversary.

We first mount a chosen plaintext attack against $ECB|ECB|CBC^{-1}$. The plaintext P we choose is the concatenation of three n-bits blocks such that P = (A, A, B). The three blocks of the corresponding ciphertexts are denoted (C_1, C_2, C_3) .

• Question 6. Represent the multiple mode, with its intermediate values A', A'', B' and B''.

▶ Question 7. Find a relation between A'', k_3 , IV and C_1 . Find another relation between A'', IV, C_1 and C_2 . Deduce a relation between k_3 , IV, C_1 and C_2 .

^{*}Figures from *Introdctuion to Modern Cryptography*, KATZ & LINDELL

• Question 8. Deduce an attack which recover k_3 . How to recover k_1 and k_2 from there? What is the complexity of the whole attack?

We then mount a chosen ciphertext attack against the $CBC|CBC^{-1}|CBC^{-1}$ mode. We further assume that IV_2 can be programmed (other initial values are fixed and known from the adversary). Consider the following algorithm:

PROCEDURE SearchCollision 1: $i \leftarrow 1$ 2: Repeat: 3: Choose $C_1^{(i)}$ and $IV_2^{(i)}$ at random 4: $C_2^{(i)} \leftarrow IV_2^{(i)}$ 5: Obtain and store $P_1^{(i)}$ and $P_2^{(i)}$; $i \leftarrow i + 1$. 6: until $P_1^{(i)} = P_1^{(j)}$ for some j < i, and display the collision.

★ Question 9. *Give an approximation of the running time of the former algorithm.*

★ Question 10. Show that if $P_1^{(i)} = P_1^{(j)}$, then $P_2^{(i)} = P_2^{(j)}$.

★ Question II. Find a relation between $IV_2^{(i)}$, $IV_2^{(j)}$, k_3 , IV_3 , $C_1^{(i)}$ and $C_1^{(j)}$ equivalent to $P_1^{(i)} = P_1^{(j)}$. Deduce an attack that recover k_3 .

Padding Oracle attack over CBC

A plaintext is not likely to be exactly of length a multiple of the block size. To bypass this problem, one could use padding: the PKCS7 standard states that the value to pad is the number of bytes that are required. For example, "Hello World" will become "Hello World\5\5\5\5" to fit 8-bytes ciphers. We are given an oracle $\mathcal{O}^{\text{Padding}}$ that, given a ciphertext *c* outputs \top iff the padding of the corresponding plaintext is correct (ie. if it ends with *i* "*i*" symbols).

Let $C = (C_1, \dots, C_N)$ be an intercepted ciphertext. We first focus on the decryption of C_N , the last block of C. Let $C' = (r_1, \dots, r_n) || C_N$ be a two-blocks long (possibly meaningless) ciphertext forged by the adversary for r_i 's of their choice. Let (P'_1, P'_2) be the corresponding plaintext.

• Question 12. Give a relation between P'_2 , C_{N-1} , (r_1, \dots, r_n) and P_N the last block of the plaintext corresponding to C.

• Question 13. Assuming that $P'_2[n-1] \neq \langle 2, explain \text{ how one can recover } P_N[n] \text{ using } \mathcal{O}^{\mathsf{Padding}}$. How can extra queries to $\mathcal{O}^{\mathsf{Padding}}$ circomvent the need for this assumption?

▶ Question 14. Show how to set $P'_2[n]$ to $\backslash 2$, and use it to recover $P_N[n-1]$. After explaining why, you may forget about the subtely highlighted in the previous question. Deduce how to recover P_N entirely.

• Question 15. Can we recover all the plaintext blocks?