Answer all > questions before looking at * questions.

Shannon's theorem

The goal of this exercise is to prove the following result from SHANNON.

Theorem 1 Let (KeyGen, Enc, Dec) be an encryption scheme such that $|\mathcal{M}| = |\mathcal{C}| = |\mathcal{K}|$. The scheme is perfectly secure if and only if:

- *I.* Every key $k \in \mathcal{K}$ is chosen with (equal) probability $1/|\mathcal{K}|$ by Gen.
- 2. For every $m \in M$ and every $c \in C$, there is a unique key $k \in K$ such that Enc(m, k) outputs c.

First, we justify that the hypothesis made on spaces is reasonable: the considered encryption schemes can be seen as the optimal ones.

• Question 1. Show that Perfect Secrecy requires $|\mathcal{K}| \ge |\mathcal{M}|$.

▶ Question 2. Show that Correctness requires $|C| \ge |\mathcal{M}|$.

Now the proof. You may consider that Enc is deterministic, as this can be done without loss of generality here.

▶ Question 3. Show that verifying conditions (1) and (2) suffices to be perfectly secure. You may consider the following equivalent definition of Perfect Secrecy:

 $\forall m, m' \in \mathcal{M}, \forall c \in \mathcal{C}, \Pr_K(\textit{Enc}(m, K) = c) = \Pr_K(\textit{Enc}(m', K) = c).$

• Question 4. Show the remaining direction.

Extending PRF range

We are given a PRF $F: (\{0,1\}^k)^2 \to \{0,1\}^k$ and we wants to build a PRF G with range twice as big.

▶ Question 5. Let $G(K, x) = F(K, x) ||F(K, \overline{x})|$. Is G a PRF? If so, prove it. Otherwise, give an attack.

▶ Question 6. Same as (1), but with $G(K, x) = let y_1 \leftarrow F(K, x)$ in: $y_1 ||F(K, y_1)$.

▶ Question 7. Same as (1), but with $G(K, x) = let L \leftarrow F(K, x)$ in: $F(L, 0^k)||F(L, 1^k)$.

Increasing PRG expansion factor

We recall that the advantage $\operatorname{Adv}_{\mathcal{A}}^{PRG}[G]$ of an algorithm \mathcal{A} against a PRG (pseudo-random generator) $G : \{0,1\}^k \to \{0,1\}^n$ is the difference of the probabilities that \mathcal{A} returns 1 when it is given $G(x) \in \{0,1\}^n$ for x uniformly sampled in $\{0,1\}^k$, and when it is given u uniformly sampled in $\{0,1\}^n$. We say that G is a secure PRG if for all probabilistic polynomial-time \mathcal{A} , the advantage of \mathcal{A} is negligible in k, i.e., $\operatorname{Adv}_{\mathcal{A}}^{PRG}[G] \leq k^{-\omega(1)}$.

In this exercise, we assume we are given a pseudo-random generator $G: \{0,1\}^k \to \{0,1\}^{k+1}$.

▶ Question 8. Consider $G^{(1)} : \{0,1\}^k \to \{0,1\}^{k+2}$ defined as follows. On input $x \in \{0,1\}^k$, $G^{(1)}$ first evaluates G(x) and obtains $(x^{(1)}, y^{(1)}) \in \{0,1\}^k \times \{0,1\}$ such that $G(x) = x^{(1)} \parallel y^{(1)}$. It then evaluates G on $x^{(1)}$ and eventually returns $G(x^{(1)}) \parallel y^{(1)}$. Show that if G is a secure PRG, then so is $G^{(1)}$.

▶ Question 9. Let $n \ge 1$. Propose a construction of a PRG $G^{(n)} : \{0,1\}^k \to \{0,1\}^{k+n+1}$ based on G. Show that if G is a secure PRG, then so is $G^{(n)}$.

Feistel networks

We start by recalling the definition of Fesitel networks.

Let $G : \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l$ be a family of functions, and let $d \ge 1$ be an integer. The Feistel network of depth d associated to G is the family of functions $F^{(d)} : \{0,1\}^{kd} \times \{0,1\}^{2l} \to \{0,1\}^{2l}$, defined as follows:

 $F^{(d)}((K_i)_{i \in \llbracket 1, d \rrbracket}, x)$ **1:** $L_0 || R_0 \leftarrow x$ **2:** For $i \in \llbracket 1, d \rrbracket$ do **3:** $L_i \leftarrow R_{i-1}; R_i \leftarrow G(K_i, R_{i-1}) \oplus L_{i-1}$ **4:** Return $L_d || R_d$

• Question 10. Draw a representation of a Feistel network of depth 3.

• Question II. Show that a Feistel network is invertible, even if the family of functions G is not.

▶ Question 12. Show that neither $F^{(1)}$ nor $F^{(2)}$ is a secure PRF.

Feistel networks are a way of constructing an efficiently invertible permutation from a set of pseudorandom functions: it suffices to consider $F^{(3)}$. In the rest of this exercise, we suppose G to be a family of pseudorandom functions.

• Question 13. Show that "collision at R_1 ", i.e. $R_1^i = R_1^j$ for two different queries *i* and *j* made by the adversary, only occurs with negligible probability.

• Question 14. Similarly show that, conditionned on "no collision at R_1 ", the probability of having a "collision at R_2 " is negligible. Conclude.

★ Question 15. Show that $F^{(3)}$ is not a strong pseudorandom permutation, i.e. $(F^{(3)}, (F^{(3)})^{-1})$ is not indistinguishable from (ρ, ρ^{-1}) where ρ is a random function, but that $F^{(4)}$ does.