M2-SIF, M2-CRYPTO

Proofs of Security

TUT n°5 — Foundations of symmetric cryptography Léo Ackermann

Answer all » questions before looking at * questions.

B Shannon’s theorem

The goal of this exercise is to prove the following result from SHANNON.

Theorem 1 Let (KeyGen, Enc, Dec) be an encryption scheme such that |M| = |C| = |K|. The scheme is perfectly
secure if and only if:

1. Every key k € K is chosen with (equal) probability 1/ |KC| by Gen.

2. Foreverym € M and every c € C, there is a unique key k € K such that Enc(m, k) outputs c.

First, we justify that the hypothesis made on spaces is reasonable: the considered encryption schemes can be seen as the optimal
ones.

» Question 1. Show that Perfect Secrecy requires |KC| = | M.

» Question 2. Show that Correctness requires |C| = | M|.
Now the proof. You may consider that Enc is deterministic, as this can be done without loss of generality here.

» Question 3. Show that verifying conditions (1) and (2) suffices to be perfectly secure. You may consider the following equivalent
definition of Perfect Secrecy:

Vm,m’' € M,Vce C,Prg(Enc(m, K) = ¢) = Prg(Enc(m’, K) = c).

» Question 4. Show the remaining direction.

B Extending PRF range

We are given a PRF F' : ({0, 1 )2 - {0, 1}* and we wants to build a PRF G with range twice as big.
» Questions. Let G(K,x) = F(K,z)||F(K,T). Is G a PRF? If so, prove it. Otherwise, give an attack.

» Question 6. Same as (1), but with G(K, z) = let y; <« F(K,z) in: yi||F(K,y1).

» Question 7. Same as (1), but with G(K,x) = let L« F(K,z) in: F(L,0%)||F(L,1%).

B Increasing PRG expansion factor

We recall that the advantage Adv4?¢[G] of an algorithm A against a PRG (pseudo-random generator) G : {0,1}F —
{0, 1}™ is the difference of the probabilities that A returns 1 when it is given G(z) € {0, 1}" for  uniformly sampled in
{0, 1}*, and when it is given u uniformly sampled in {0, 1}". We say that G'is a secure PRG if for all probabilistic polynomial-
time A, the advantage of A is negligible in k, i.c., Advii 9 [G] < k=1,

In this exercise, we assume we are given a pseudo-random generator G : {0, 1}¥ — {0, 1}F+1.

» Question 8. Consider GV = {0,1}F — {0, 1Y*+2 defined as follows. On inpur x € {0,1}%, GO first cvaluates G(x)
and obtains (x| y(M) € {0, 1}* x {0, 1} such thar G(z) = M) || y V. It then evaluates G on V) and eventually returns
G(zM) || yO). Show that if G is a secure PRG, then 50 is GV,

» Question 9. Lern = 1. Propose a construction of a PRG G+ {0,1}% — {0, 1}**"+Y based on G. Show that if G is a
secure PRG, then so is G,

1/2



Proofs of Security Léo Ackermann

B Feistel networks

We start by recalling the definition of Fesitel networks.

Let G : {0,1}F x {0,1}} — {0,1}' bea family of functions, and let d > 1 be an integer. The Feistel network of
depth d associated to G is the family of functions F?) : {0, 137 % {0,1}% — {0,1}?, defined as follows:

I LO||R0 «— X

2: Fori € [1,d] do

321 Li—Ri_1;R — G(K;,Ri—1)® L
4: Return Lg|| Ry

» Question 10. Draw a representation of a Feistel network of depth 3.
» Question 1x.  Show that a Feistel network is invertible, even if the family of functions G is not.

» Question 12. Show that neither F' D) nor F? is a secure PRF.

Feistel networks are a way of constructing an efficiently invertible permutation from a set of pseudorandom functions: it
suffices to consider F'®). In the rest of this exercise, we suppose G to be a family of pseudorandom functions.

» Question 13. Show that "collision at Ry, i.c. R’i = R{ for two different queries © and j made by the adversary, only occurs
with negligible probability.

» Question 14. Similarly show that, conditionned on "no collision at Ry, the probability of having a "collision at Ro" is
negligible. Conclude.

* Question 15. Show that F'3) is not a strong psendorandom permutation, i.e. (F3) (FO) ™YY is not indistinguishable from
(p, p~ ) where p is a random function, but that FY) does,
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