
Proofs of Security
TUT n°5 — Foundations of symmetric cryptography Léo Ackermann

M2-SIF, M2-CRYPTO

Answer all § questions before looking at ‹ questions.

■ Shannon’s theorem
The goal of this exercise is to prove the following result from Shannon.

Theorem 1 Let pKeyGen, Enc, Decq be an encryption scheme such that |M| “ |C| “ |K|. The scheme is perfectly
secure if and only if:

1. Every key k P K is chosen with (equal) probability 1{ |K| by Gen.

2. For every m P M and every c P C, there is a unique key k P K such that Encpm, kq outputs c.

First, we justify that the hypothesis made on spaces is reasonable: the considered encryption schemes can be seen as the optimal

ones.

§ Question 1. Show that Perfect Secrecy requires |K| ě |M|.

§ Question 2. Show that Correctness requires |C| ě |M|.

Now the proof. You may consider that Enc is deterministic, as this can be done without loss of generality here.

§ Question 3. Show that verifying conditions (1) and (2) suffices to be perfectly secure. You may consider the following equivalent
definition of Perfect Secrecy:

@m, m1 P M, @c P C, PrKpEncpm, Kq “ cq “ PrKpEncpm1, Kq “ cq.

§ Question 4. Show the remaining direction.

■ Extending PRF range

We are given a PRF F : pt0, 1u
k
q2 Ñ t0, 1u

k
and we wants to build a PRF G with range twice as big.

§ Question 5. Let GpK, xq “ F pK, xq||F pK, xq. Is G a PRF ? If so, prove it. Otherwise, give an attack.

§ Question 6. Same as (1), but with GpK, xq “ let y1 Ð F pK, xq in: y1||F pK, y1q.

§ Question 7. Same as (1), but with GpK, xq “ let L Ð F pK, xq in: F pL, 0kq||F pL, 1kq.

■ Increasing PRG expansion factor

We recall that the advantage Adv
P RG
A rGs of an algorithm A against a PRG (pseudo-random generator) G : t0, 1uk Ñ

t0, 1un
is the difference of the probabilities that A returns 1 when it is given Gpxq P t0, 1un

for x uniformly sampled in

t0, 1uk
, and when it is given u uniformly sampled in t0, 1un

. We say that G is a secure PRG if for all probabilistic polynomial-

time A, the advantage of A is negligible in k, i.e., Adv
P RG
A rGs ď k´ωp1q

.

In this exercise, we assume we are given a pseudo-random generator G : t0, 1uk Ñ t0, 1uk`1
.

§ Question 8. Consider Gp1q : t0, 1uk Ñ t0, 1uk`2 defined as follows. On input x P t0, 1uk , Gp1q first evaluates Gpxq

and obtains pxp1q, yp1qq P t0, 1uk ˆ t0, 1u such that Gpxq “ xp1q ∥ yp1q. It then evaluates G on xp1q and eventually returns
Gpxp1qq ∥ yp1q. Show that if G is a secure PRG, then so is Gp1q.

§ Question 9. Let n ě 1. Propose a construction of a PRG Gpnq : t0, 1uk Ñ t0, 1uk`n`1 based on G. Show that if G is a
secure PRG, then so is Gpnq.
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■ Feistel networks
We start by recalling the definition of Fesitel networks.

Let G : t0, 1u
k

ˆ t0, 1u
l

Ñ t0, 1u
l

be a family of functions, and let d ě 1 be an integer. The Feistel network of

depth d associated to G is the family of functions F pdq : t0, 1u
kd

ˆ t0, 1u
2l

Ñ t0, 1u
2l

, defined as follows:

F pdqppKiqiPJ1,dK, xq

L0||R0 Ð x
For i P J1, dK do

Li Ð Ri´1; Ri Ð GpKi, Ri´1q ‘ Li´1
Return Ld||Rd

1:
2:
3:
4:

§ Question 10. Draw a representation of a Feistel network of depth 3.

§ Question 11. Show that a Feistel network is invertible, even if the family of functions G is not.

§ Question 12. Show that neither F p1q nor F p2q is a secure PRF.

Feistel networks are a way of constructing an efficiently invertible permutation from a set of pseudorandom functions: it

suffices to consider F p3q
. In the rest of this exercise, we suppose G to be a family of pseudorandom functions.

§ Question 13. Show that "collision at R1", i.e. Ri
1 “ Rj

1 for two different queries i and j made by the adversary, only occurs
with negligible probability.

§ Question 14. Similarly show that, conditionned on "no collision at R1", the probability of having a "collision at R2" is
negligible. Conclude.

‹ Question 15. Show that F p3q is not a strong pseudorandom permutation, i.e. pF p3q, pF p3qq´1q is not indistinguishable from
pρ, ρ´1q where ρ is a random function, but that F p4q does.
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