Answer all > questions before looking at * questions.

Hash-and-Sign signature from lattices

The *Hash-and-Sign* paradigm is a generic method for deriving rather efficient signatures from trapdoor one-way functions^{*}. The signature scheme is derived as follows:

- KeyGen select a trapdoor function f together with its trapdoor τ_f . The public key of the scheme is f, the secret key is τ_f .
- Sign(sk, m) first hashes the message m to some point $y = \mathcal{H}(m)$ within f's range. Then, it computes $\sigma \in f^{-1}(m)$ using the trapdoor τ_f .
- Verif (pk, m, σ) simply checks that $\mathcal{H}(m) = f(\sigma)$.

This exercise focuses on a classical instanciation of the Hash-and-Sign paradigm in the lattice world. We briefly introduce lattices and some important results that can be used as blackboxes in this exercise[†].

A (full-rank) lattice Λ is a discrete subgroup of \mathbb{R}^n , and as such it always admits generators $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^n$ (often compiled within a matrix **B**) whose integer linear combinations yield the lattice $\Lambda = \Lambda(\mathbf{B})$. The security of the scheme we focus on relies on hypotheses related to the (Inhomogeneous) Short Integer problems, defined as follows.

Definition 1 ((Inhomogeneous) Short Integer Solution) Given an integer q, a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, a real β , and a syndrome $\mathbf{u} \in \mathbb{Z}_q^n$.

- SIS. The problem is to find a nonzero vector $e \in \mathbb{Z}_q^m$ such that $e^{\top} A = 0$ and $||e|| \leq \beta$.
- **ISIS.** The problem is to find a nonzero vector $e \in \mathbb{Z}_q^m$ such that $e^{\top}A = u$ and $||e|| \leq \beta$.

The following results regarding lattice-based cryptography will be of importance for the rest of the tutorial.

- Gaussian sampling. There is a PPT algorithm that, given a basis \boldsymbol{B} of an n-dimensional lattice $\Lambda = \Lambda(\boldsymbol{B})$, a parameter $s \ge \|\tilde{\boldsymbol{B}}^{\dagger}\| \cdot \omega(\sqrt{\log n})$, and a center $\boldsymbol{c} \in \mathbb{R}^{n}$, outputs a sample from a distribution that is statistically close to $G_{\Lambda,s,\boldsymbol{c}}$.
- Lattice generation with trapdoor. For any prime q = poly(n), and any $m \ge 5n \log q$, there is a PPT algorithm that outputs a matrix $A \in \mathbb{Z}_q^{m \times n}$ together with a basis T_A of $\Lambda^{\perp}(A)$ such that: the distribution of A is statistically close to the uniform over $\mathbb{Z}_q^{m \times n}$ and $\|\widetilde{T}_A\| \le L := m^2 \sqrt{m}$.
- Conditional distribution of syndrome. Let $u \in \mathbb{Z}_q^n$ and $t \in \mathbb{Z}^m$ be an arbitrary solution to $t^{\top} A = u \mod q$. Then the conditional distribution of $e \leftarrow G_{\mathbb{Z}^m,s}$ given $e^{\top} A = u \mod q$ is exactly $t + G_{\Lambda^{\perp},s,-t}$.
- Distribution of syndrome. Let n, q be integers with q prime, and let $m \ge 2n \log q$. Then for all but a $2q^{-n}$ fraction of all $A \in \mathbb{Z}_q^{m \times n}$, and for any $s \ge \omega(\sqrt{\log n})$, the distribution of the syndrome $u = e^{\top}A \mod q$ is statistically close to uniform over \mathbb{Z}_q^n , where $e \leftarrow G_{\mathbb{Z}^m,s}$.
- Recheable syndromes. Let $m \ge 2n \log q$. Then, for all but an atmost q^{-n} fraction of $A \in \mathbb{Z}_q^{m \times n}$, for any syndrome $u \in \mathbb{Z}_q^n$, there is a $e \in \{0, 1\}^m$ such that $e^{\mathsf{T}}A = u \mod q$.

A primer on game-base proofs

▶ Question 1. Let \mathcal{G}_0 and \mathcal{G}_1 be two security games, and \mathcal{A}_0 , \mathcal{A}_1 be adversaries against them. Let \mathcal{D} be an adversary trying to determine whether she is interacting with \mathcal{G}_0 or \mathcal{G}_1 . Relate $\operatorname{Adv}(\mathcal{D})$, $\operatorname{Pr}(\mathcal{G}_0(\mathcal{A}_0) \to \top)$ and $\operatorname{Pr}(\mathcal{G}_1(\mathcal{A}_1) \to \top)$.

▶ Question 2. Let $\mathcal{G}_0, \dots, \mathcal{G}_n$ be a sequence of game, and $(\mathcal{D}_i)_{0 \leq i < n}$ be distinguishers between games \mathcal{G}_i and \mathcal{G}_{i+1} . Assuming that $Pr(\mathcal{G}_n \to \top) = p$, what can be said about $Pr(\mathcal{G}_0 \to \top)$?

^{*}Informally, a family of trapdoor function is a family of efficiently computable functions that are hard to invert, except if one is given the associate trapdoor.

[†]The point here is really to understand how those results branch together and what operations they allow to perform.

 $^{^{*}}$ This denote the Gram-Schmidt orthogonalization of the matrix **B**.

[§]The discrete Gaussian distribution over a lattice is really the (scaled) continuous Gaussian distribution restricted to the lattice points.

Preimage sampleable functions from (I)SIS hardness

In this part, we design preimage-sampleable function that are one-way and collision-resistant under the SIS and ISIS hypothesis.

Definition 2 (Collision-resistant preimage sampleable functions) A collection of collision-resistant preimage sampleable functions is a tuple of PPT algorithms TrapGen, SDom and SPre) such that:

- TrapGen outputs a couple (a, τ_a) where a describe an efficiently computable function $f_a : D \to R$, and τ_a some trapdoor information.
- SDom(a) samples $x \in D$ such that the distribution of $f_a(x)$ is (statistically close from) uniform.
- $SPre(\tau_a, y \in R)$ samples from (a distribution statistically close from) the conditional distribution of $x \leftarrow SDom(a)$, given $f_a(x) = y$. Additionally, it requieres that the later distribution has min-entropy at least $\omega(\log n)$.

Moreover, the advantage of any adversary for producing a preimage of $y \leftarrow U(R)$ by f_a is negligible if it was not handed τ_a (this is one-wayness), and the advantage of any adversary for producing $x \neq x'$ such that $f_a(x) = f_a(x')$ is negligible if it was not handed τ_a (this is collision-resistance).

Let p = poly(n) prime, $m \ge 5n \log q$ and $s \ge L \cdot \omega(\sqrt{\log n})$. Under the hardness of $\text{ISIS}_{q,m,s\sqrt{m}}$ and $\text{SIS}_{q,m,2s\sqrt{m}}$, collision-resistant permutations exist over lattices. The trapdoor generation is performed as follows.

TrapGen samples (A, T_A) such that A is statistically close from the uniform distribution, and T_A is a trapdoor for A – namely, a good basis of $\Lambda^{\perp}(A)$ – and the associated function is $f_A : e \mapsto e^{\top}A \mod q$, with domain $D = \{e \in \mathbb{Z}^m \mid \|e\| \leq s\sqrt{m}\}$ and range $R = \mathbb{Z}_q^n$.

▶ Question 3. Propose algorithms for SDom and SPre that fit this TrapGen algorithm.

▶ Question 4. Show that one-wayness and collision-resistance hold under the (1)SIS hypotheses for a forementioned parameters.

• GPV signatures

We now present the scheme known as GPV's signature (in its stateful version), an instanciation of the Hash-and-Sign paradigm over lattices. Let \mathcal{H} be a hash function modeled as a random oracle. We have:

- KeyGen (1^{λ}) samples $(\boldsymbol{A}, \boldsymbol{T}_{\boldsymbol{A}})$ by calling TrapGen (1^{λ}) .
- Sign (T_A, m) returns σ_m if the couple (m, σ_m) is in local storage[¶]. Otherwise, it let σ_m be a preimage of $\mathcal{H}(m)$ (found using SPre), stores the couple (m, σ_m) and outputs σ_m .
- Verif (\mathbf{A}, m, σ) computes $y = \mathcal{H}(m)$ and checks whether both $\sigma^{\top} \mathbf{A} = y$ and $\sigma \in D$.

▶ Question 5. Write the stateful-EUF-CMA security game in a game-based style. You may defined auxiliary algorithm O_{sign} and O_{RO} . This is the game G_{real} .

▶ Question 6. Write a game \mathcal{G}_{sim} that "looks like" \mathcal{G}_{real} in which the trapdoor T_A is no longer used. You may defined auxiliary algorithm \mathcal{S}_{sign} and \mathcal{S}_{RO} . What is $\Pr(\mathcal{G}_{sim} \to \top)$?

• Question 7. Write a game-based proof showing that the distance between the games is negligible. You may introduce an intermediate game ensuring $\mathcal{H}(m)$ has always be queried before signing the message m, and assume that \mathcal{A} queried $\mathcal{H}(m^*)$ for the message m^* he produces a forgery on.

- ▶ Question 8. Deduce that stateful-GPV is SEU-CMA secure under the (1)SIS hypothesis in the ROM.
- Question 9. Propose non-stateful version of this signature scheme, and argue for its security.

[¶]This is where the *stateful* adjective reflects.