Answer all > questions before looking at * questions.

Pedersen commitment

We start by introducing commitment schemes, a cryptographic primitive that allows one to commit to a chosen message while keeping it hidden to others, with the ability to reveal the committed value later on^{*}.

Definition 1 (Commitment scheme) A commitment scheme *is a collection of three algorithms Setup, Commit and* Verif such that:

- Setup (1^{λ}) returns the public parameters pp for the security parameter λ .
- Commit(pp, m) returns the commitment c and the corresponding opening value o.
- Open(pp, m, c, o) takes a message m, commitment c and an opening value o and returns \top iff c opens to m using o.

Two natural security notions arise from such a scheme. The first is the *hiding* property, that morally states that any PPT adversary has no advantage in distinguishing a commitment of a value m_0 from a commitment of a value m_1 , even if she chose the messages. While this property protect the person who is commiting, another ensures that a person looking at a commitment cannot be tricked and is called *binding*. Informally, it states that no PPT adversary can come up with a commitment that opens to different messages using different opening values.

• Question 1. Formalize the Hinding and Binding properties, precising the advantage in the related games.

• Question 2. Show how to construct a hiding and binding commitment scheme from any IND-CPA cryptosystem.

We now focus on a particular commitment scheme, introduced by Perdersen in 1991, and defined as follows.

- Setup (1^{λ}) chooses a group G of prime order q and outputs two random elements (g, h) of G as the public parameters pp.
- Commit (pp, m) samples $r \leftarrow \mathfrak{T}_{\mathfrak{T}_q}$ to produce the commit $c = g^m h^r$. The corresponding opening value is r.
- $\operatorname{Open}(\operatorname{pp}, m, c, o)$ returns \top iff $c = g^m \cdot h^o$.
- Question 3. Prove that the commitment scheme is hiding, and binding under the DL assumption.

▶ Question 4. Getting inspired by Schnorr protocol, propose an HVZKPoK[†] protocol for proving the knowledge of a messageopening couple corresponding to a commited message. What are the expected properties for such a scheme? Prove them.

• Question 5. Extend this protocol for additionally proving that the two handed commitments correspond to the same message.

▶ Question 6. How can those protocols be made non-interactive?

ZKPoK for quadratic residuosity

Let $N \in \mathbb{N}$ be the product of two odd primes. An integer q is called a *quadratic residue modulo* N if there exists an integer x such that $x^2 \equiv q \mod N$. We recall that the set of quadratic residues modulo N form a group QR_N .

In this exercise, Alice wants to convinces Bob that the number x she is handing is a quadratic residue modulo N. To this end, she follows the protocol $\prod_{i\in QR_N}^{\mathsf{ZKP}(\mathsf{oK})}$ partially described on next page.

^{*}For a down-to-earth analogy, one can think of predictions in magic tricks.

[†]In Honest-Verifier Zero-Knowledge-Proof-of-Knowledge, the Verifier is supposed to strictly follows the protocol. This can be exploited when proving the zero-knowledge property.

The QR-ZKP(oK) protocol followed by Alice A and Bob B is the following.

Protocol $\prod_{e \in QR_N}^{\mathsf{ZKP}(\mathsf{oK})}$ **1:** At the beginning, \mathcal{A} knows (q, x) s.t. $q = x^2 \mod N$, and \mathcal{B} knows q **2:** \mathcal{A} samples $r \leftrightarrow_{\mathbb{S}} \mathbb{Z}_N^{\times}$ and hands $y = r^2 \mod N$ to \mathcal{B} **3:** \mathcal{B} samble an uniform random bit $b \leftrightarrow_{\mathbb{S}} \{0, 1\}$, and hands it back to \mathcal{A} **4:** \mathcal{A} set z = r if $b = 1, z = xr \mod N$ otherwise, and sends z to \mathcal{B} **5:** \mathcal{B} checks that \cdots

• Question 7. Propose a verification step for the verifier Bob.

- Question 8. Prove the scheme is a ZKP for quadratic residuosity.
- ▶ Question 9. Prove the scheme is a ZKPoK for quadratic residuosity.

(HV)ZKPoK over graphs

In this exercise, we focus on two undirected graphs problems, known as the graph isomorphism problem (GIP) and the 3-coloring problem (3-COL).

Definition 2 (GIP, 3-COL) The graph isomorphism problem (GIP) and the 3-coloring problem (3-COL) are defined as follows:

- **GIP.** Given two isomorphic[‡]graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, that is such that there exists a mapping $\mu : V_1 \to V_2$ on vertices such that $(u, v) \in E_1$ iff $(\mu(u), \mu(v)) \in E_2$, find such a μ .
- **3-COL.** Given a 3-colorable graph G = (V, E), that is there is a mapping $\mu : V \rightarrow \{0, 1, 2\}$ such that for all $(u, v) \in E$ it holds that $\mu(u) \neq \mu(v)$, find such a μ .

• Question 10. Come up with an Honest-Verifier ZKPoK protocol for the graph isomorphism problem, meaning that as long as the Verifier strictly follows the protocol, the zero-knowledge property is indeed achieved.

• Question II. Prove that this protocol is indeed HVZKPoK. What are the odds that an adversary fool a verifier? Can this quantity be made negligible in the context of polytime verifiers?

We now focus on designing a zero-knowledge proof of knowledge for the 3-coloring problem and establish a well-known result about a subclass of languages that belongs to ZKPoK.

- ▶ Question 12. Propose a ZKPoK protocol for the 3-coloring problem on graphs.
- Question 13. Prove that this is indeed a ZKPoK protocol.
- Question 14. Conclude that $NP \subseteq ZK$.

[‡]In this context, a necessary observation is that the isomorphic relation is an equivalence relation.