We start by introducing a few cryptographic games that we will use through this tutorial.

Definition I (DL, CDH, DDH, \boldsymbol{k}-SDH) Let G be a cyclic group of order q, and g a generator of it. The Discrete Logarithm, Computation/Decisional/k-Strong Diffie-Hellmann problems are defined as follows.

- DL. Given $\left(G, q, g, g^{a}\right)$ for $a \hookleftarrow_{\$}[q]$, the goal is to recover a.
- CDH. Given $\left(G, q, g, g^{a}, g^{b}\right)$ for $(a, b) \hookleftarrow_{\$}[q]^{2}$, the goal is to compute $g^{a b}$.
- DDH. Given (G, q, g) and access to an oracle $\mathcal{O}^{\text {samples, }}$, decide whether $\mathcal{O}^{\text {samples }}$ is returning samples of the form $\left(g^{a}, g^{b}, g^{a b}\right)$ or $\left(g^{a}, g^{b}, g^{c}\right)$ for $(a, b, c) \hookleftarrow_{\$}[q]^{3}$.
- \boldsymbol{k}-SDH. Given $\left(G, q, g, g^{a}, g^{a^{2}}, \cdots, g^{a^{k}}\right)$ for $a \hookleftarrow_{\$} \mathbb{Z}_{q}^{\times}$, the goal is to produce a tuple of the form $\left(w, g^{\frac{1}{a+w}}\right)$.

ElGamal signatures

In 1984, ElGamal proposed a signature scheme based on the discrete logarithm problem. We focus here on its naive version*, that consists in the following three algorithms.

- KeyGen $\left(1^{\lambda}\right)$ takes p prime and compute g a generator of \mathbb{Z}_{p}^{\times}. It samples uniformly $x \hookleftarrow_{\$} \mathbb{Z}_{p-1}^{*}$, and computes $y=g^{x} \bmod p$. The public key is (p, g, y), the secret key is (p, g, x).
- $\operatorname{Sign}\left(s k, m \in \mathbb{Z}_{p-1}\right)$ samples $k \hookleftarrow_{\$} \mathbb{Z}_{p-1}^{*}$ and computes $r=g^{k} \bmod p, s=(m-x r) / k \bmod p-1$. The signature is the couple (r, s).
- $\operatorname{Verify}(p k, m,(r, s))$ checks that both $r \in \mathbb{Z}_{p}$ and $s \in \mathbb{Z}_{p-1}$, and that $g^{m} \equiv y^{r} \cdot r^{s} \bmod p$.
- Question I. Show that this scheme is correct.
- Question 2. The EUF-KOA security property stands for existentially-unforgeable-against-key-only-attacks, and capture the unability for an adversary to produce a valid message-signature couple without seeing any valid ones. Properly describe the corresponding cryptographic game, precising the advantage of an adversary.
- Question 3. Show that this scheme is not EUF-KOA secure.

Boneh-Lynn-Shacham signatures

Pairing-based cryptography is the use of a pairing between elements of two cryptographic groups to a third group.
Definition 2 (Pairing) Let G and G_{T} be two cyclic group of prime order q respectively written additively and multiplicatively. A (symmetric) pairing is an efficiently computable map $\pi: G \times G \rightarrow G_{T}$ such that
I. (Bilinearity) $\forall\left(g_{1}, g_{2}\right) \in G^{2},(a, b) \in \mathbb{Z}, \pi\left(g_{1}^{a}, g_{2}^{b}\right)=\pi\left(g_{1}, g_{2}\right)^{a b}$
2. (Non-degeneracy) $\forall(g, h) \in G^{2}, \pi(g, h)=1$ if and only if $g=1$ or $h=1$.

The BLS signature - for Boneh, Lynn, Shacham - was introduced in 200 and is as follows.

[^0]- KeyGen $\left(1^{\lambda}\right)$ generates two cyclic groups $\left(G, G_{T}\right)$ of prime order $q=q(\lambda)$ together with a pairing $\pi: G \times G \rightarrow$ G_{T}, and select \mathcal{H} a hash function hashing into G. The secret key is $x \hookleftarrow_{\mathbb{\$}} \mathbb{Z}_{q}^{*}$, and the public key is $\left(g, g^{x}\right)$ for some generator g of G.
- $\operatorname{Sign}(s k, m)$ returns $\sigma=\mathcal{H}(m)^{s k}$.
- Verif $(p k, m, \sigma)$ checks that $\pi(\sigma, g)$ and $\pi(\mathcal{H}(m), p k)$ are equal.
- Question 4. Is the DDH problem hard in the group G used in BLS?
- Question 5. Show that if the $D L$ problem is hard in G, then the $D L$ problem is hard in $G_{T}{ }^{\dagger}$
- Question 6. Show that the BLS signature scheme is EUF-CMA in the random oracle model under the hypothesis that the CDH problem is hard.
- Question 7. Focusing solely on correctness, show how BLS signatures can be compressed in the context of multisignatures, that is a collection $\left\{\sigma_{i}\right\}_{i}$ of BLS signatures on a same message m - but under different verification keys - can be merged into a meta-signature σ^{*} that can be verified under a meta public key pk*.

Boneh-Boyen signatures

The weak version of the BB signature scheme was introduced by Boneh \& Boyen in 2008 as follows. We show that the scheme is $(k-1)$-wEUF-CMA secure in the standard model under the k-SDH hypothesis.

- KeyGen $\left(1^{\lambda}\right)$ generates keys as in the BLS signature scheme.
- $\operatorname{Sign}(s k, m)$ returns $\sigma:=g^{\frac{1}{x+m}}$ if $x+m \not \equiv 0 \bmod q$, otherwise returns $\sigma:=1$.
- Verify $(p k, \sigma, m)$ checks that $\pi\left(\sigma, g^{x} \cdot g^{m}\right)$ and $\pi(g, g)$ are equal.
- Question 8. The k-wEUF-CMA security property is a variant of EUF-CMA where the adversary only obtains signatures for k messages he chose before obtaining key materials. Properly define the associated game and advantage.
- Question 9. Show that, for $k>k^{\prime} \in \mathbb{N}$, the k-SDH problem reduces to the $k^{\prime}-$ SDH problem. ${ }^{\ddagger}$
- Question 10. (Simulation of KeyGen, $1 / 2$). Given as input $\left(m_{1}, \cdots, m_{k}\right)$ from $\mathcal{A}_{w E U F-C M A}\left(\mathcal{A}\right.$ for short), $\mathcal{B}_{\text {SDH }}$ (B for short) needs to simulate the KeyGen step of the BB signature scheme. Let $P(X)=\prod_{i=1}^{k-1}\left(X+m_{i}\right)$. The algorithm \mathcal{B} wants to ouput pk $:=\left(g^{P(a)}, g^{a P(a)}\right)$, where a is the random value from the $S D H$ challenge. Show how \mathcal{B} can compute such a public key. What is the associated secret key?
- Question II. (Simulation of KeyGen 2/2). Is the distribution of the simulation of KeyGen equal to the distribution of the real KeyGen. This is crucial, as we want \mathcal{A} to behave exactly as if it was really attacking the signature scheme.
- Question 12. (Simulation of Sign). Show how \mathcal{B} can produce valid signatures $\left(\sigma_{i}\right)_{i}$ for the messages $\left(m_{i}\right)_{i}$.
- Question 13. (Extraction of the solution). Show how \mathcal{B} can produce a valid solution for SDH given (m^{*}, σ^{*}), a valid forgery banded by \mathcal{A}. You may show that $\sigma^{*}=g^{P(a) /(a+s) \S}$ for some s, decompose $P(a)$ by Euclidean division, and finally show how to recover $g^{1 /(a+s)}$ from σ^{*} (re-using the SDH group elements given as input).
- Question 14. Conclude.

[^1]
[^0]: *In the real scheme, the message is replaced by a hash of the message during the signing and verification procedure.

[^1]: ${ }^{\dagger}$ In this case, we say that DL_{G} reduces to $\mathrm{DL}_{G_{T}}$.
 ${ }^{\ddagger}$ As a consequence, one can consider for simplicity that an adversary for k-wEUF-CMA makes exactly k signing requests. Indeed, if it asks for $k^{\prime}<k$ signatures, the reduction will be from $k^{\prime}-\mathrm{SDH}$, and the later reduces from k-SDH.
 ${ }^{5}$ We denote by a the underlying secret quantity of the k-SDH instance we are dealing with.

