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■ Introduction
The evolution of cryptography. Cryptography, the art and science of secure communication,
has an illustrious history dating back to ancient civilizations. Early cryptographic techniques, often
referred to as historical ciphers, were used to encode messages and protect sensitive information
from prying eyes. These methods included the Caesar cipher, the Vigenère cipher, and transposition
ciphers. While these early systems provided a degree of security, they were far from invulnerable, as
their encryption mechanisms were often based on simple and easily breakable algorithms.

In the modern era, cryptography has evolved into a complex and sophisticated field that plays
a pivotal role in securing digital communication, financial transactions, and data protection. Let
focus on encryption for a moment. Contemporary cryptographic methods can be broadly catego-
rized into two paradigms: symmetric and asymmetric cryptography. Symmetric cryptography, akin
historical ciphers, involves the use of a shared secret key for both encryption and decryption. This
shared key must be kept confidential between the communicating parties. Notable symmetric en-
cryption algorithms include the Data Encryption Standard (DES), the Advanced Encryption Stan-
dard (AES), and the Rivest Cipher (RC4). These algorithms are highly efficient and widely used
for bulk data encryption, ensuring the privacy and integrity of information. On the other hand,
asymmetric cryptography, also known as public-key cryptography, utilizes a pair of keys: a public
key and a private key. The public key is openly distributed and can be used for encryption, while
only the holder of the private key can decrypt the data. But cryptography is way more than that and
is useful securing digital signatures, key exchange protocols, and other applications where trust and
authenticity are paramount.

A little bit of math can accomplish what all the guns and barbed wire can’t: a little bit of math can keep a
secret.

— Edward Snowden

One of the most significant developments in modern cryptography is the pursuit of provable
security. The Kirchhoff principle posists that the security of a cryptographic system should de-
pend solely on the secrecy of the cryptographic key, not on the obscurity of the algorithms or meth-
ods used. This principle guides the development of robust and trustworthy encryption techniques,
emphasizing the need for strong, well-protected keys as the cornerstone of secure communication.
Consequently, cryptographers aim to design cryptographic schemes that are based on hard mathe-
matical assumptions and have rigorously proven security properties. This involves the use of reduc-
tions and game-based proofs to demonstrate that the security of a cryptographic construction can
be reduced to the hardness of a well-defined mathematical problem, eg. the discrete logarithm or
factorization problem. This rigorous approach provides a high level of confidence in the security of
cryptographic systems and has become a cornerstone of cryptographic research. Those approaches
are the main focus of this unit.
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Limits of modern cryptography. While modern cryptography has made significant strides in
enhancing the security of digital communication, it is essential to acknowledge the inherent limita-
tions and challenges that persist in this ever-evolving field. These limitations can be grouped into
three critical aspects.

Perhaps one of the most pressing concerns in modern cryptography is the impending era of
quantum computing. Quantum computers have the potential to efficiently solve certain mathemat-
ical problems that underpin the security of widely used encryption schemes, such as integer factor-
ization and discrete logarithm problems. This development threatens the security of many existing
cryptographic systems, emphasizing the urgency of post-quantum cryptography. Researchers are
actively exploring new encryption methods that can withstand the computational power of quan-
tum computers, and this challenge remains a focal point for the field. A second concern lies within
the fact that cryptography often grapples with a divide between provable and concrete security.
While provable security relies on rigorous mathematical proofs and reductions to demonstrate the
resistance of cryptographic schemes to attacks, it sometimes falls short in practical applicability. In
contrast, concrete security is established through heuristics, cryptanalysis, and empirical evidence.
Many widely-used cryptographic systems, such as those based on the RSA or ECC algorithms, rely
on concrete security due to the lack of efficient, provably secure alternatives. Bridging this gap is an
ongoing effort, aiming to ensure both theoretical rigor and real-world practicality in cryptographic
systems. A last concern to be mentioned is that cryptography traditionally concentrates on isolated
cryptographic primitives, such as encryption, digital signatures, and key exchange. However, as the
complexity of digital systems and networks grows, cryptographic protocols involve multiple inter-
acting primitives, leading to intricate security challenges. To address these complexities, the devel-
opment of formal methods becomes essential. Formal methods allow for the systematic verification
of entire cryptographic protocols, ensuring that they remain secure and robust in the face of ever-
evolving threats. These formal methods offer a holistic approach to security, mitigating potential
vulnerabilities in the design and implementation of cryptographic systems.

Defining security Defining security in a cryptographic context is a multi-faceted process, typi-
cally approached in a three-step journey that involves rigorous and precise considerations.

First and foremost, the cryptographic scheme itself must be precisely defined, with clarity re-
garding its interface and the properties it is intended to provide. This step involves establishing the
rules and mechanics of the scheme, outlining how it operates, and specifying what it aims to achieve
in terms of features. This typically includes a specification of the primitive behavior in an even world,
often refered as correctness property. The scheme’s structure should be clearly articulated to serve
as the foundation for security analysis. The second crucial step revolves around defining what it
means to "break the scheme". This is often done through the formulation of cryptographic games
or experiments. These games serve as a means to quantitatively and qualitatively assess the security
of the scheme. For example, in a security game, participants (i.e., the cryptographic scheme and
an adversary) engage in a competition, with the adversary’s objective being to exploit the scheme’s
vulnerabilities and compromise its security. The definition of "breaking the scheme" becomes the
adversary’s successful achievement of specified objectives, such as decrypting an encrypted message
without the secret key. These well-defined games or experiments provide a structured framework for
evaluating the scheme’s robustness against potential threats. The third and final step involves explic-
itly defining the capabilities and constraints of the attacker. This encompasses setting boundaries
on the attacker’s computational resources, such as their running time, and access to oracles, which
are external tools that might aid the attacker in their efforts. The precise delineation of attacker capa-
bilities is essential for assessing the scheme’s security under realistic threat scenarios. It also ensures
that security definitions remain relevant and aligned with the evolving landscape of computational
power and adversarial tactics.
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■ 1 Asymmetric cryptography
Notation. In this section, we highlight secret and public cryptographic materials, typically keys,
by changing their color.

Public-key cryptography, a revolutionary concept in modern cryptography, enables secure commu-
nication, digital signatures and much more, without the need for a shared secret key. Its founda-
tional idea involves the use of a key pair: a public key that can be openly distributed and a corre-
sponding private key that remains exclusively known to the key’s owner.

■ 1.1 Confidential communication through public-key encryption
Public-key encryption stands as a cornerstone of securing communication in the digital age. It al-
lows for the confidential exchange of information between parties by leveraging a pair of keys: a
public key for encryption and a private key for decryption. This approach ensures that sensitive
data can be securely transmitted over potentially insecure channels, with only the intended recipi-
ent possessing the means to decipher the message. Another possible approach to achieve such a goal,
we do not focus on here, is as follows: public-key cryptography can be used for key-encapuslation
mechanisms, enabling parties to securely negotiate and establish shared secret keys for subsequent
symmetric cryptography.

• 1.1.1 Public-key encryption and related properties

Let’s follow our motto to study the security of public-key encryption scheme by precisely defining
the primitive and stating the security property we consider.

Definition 1 (Public-key encryption scheme). A public-key encryption scheme is a tuple of
three probabilistic polynomial time (PPT) algorithms (KeyGen, Enc, Dec) such that:

• The key generation algorithm KeyGen takes as input the security parameter λ written in
unary*and returns a key-pair (pk, sk) ← KeyGen(1λ), respectively called the public-
key and the secret-key.

• The encryption algorithm Enc takes as input the public key pk, a message m and returns
a ciphertext c = Enc(pk, m).

• The decryption algorithm Dec takes as input the secret key sk, a ciphertext c and returns
a message m← Dec(sk, c).

The previous definition only describes the interface of a PKE scheme, hence does not capture any
of its expected behavior of security properties Exo 1 . Let discuss this further.

Correctness of PKE The correctness property reflects the intented behavior of a primitive with-
out considering an adversary in town. In the case of encryption scheme, we expect that using evenly
generated keys, the Dec algorithm invert the Enc algorithm. More precisely, such a scheme is said
correct whenever for all possible message m it holds that:

Pr
[

(pk, sk)← KeyGen(1λ) :
Dec(sk, Enc(pk, m)) = m

]
= 1− negl(λ),

where negl(λ) is a function negligible in λ, that is a function that decrease faster that any inverse
of polynomial in λ.† The later probability is written on an experiment: the part preceeding the

*The reason why is that one wants running time polynomial in the security parameter in cryptography, and that the
standard notion of efficiency in complexity theory is polynomial time in the input size. By handing the security parameter
as unary, the notions coincide.

†In particular, this implies that correctness, as many cryptographic notion, is an asymptotical notion.
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colon describes the experiment and the part after is the event the probability focuses on. This could
have been written Pr[Dec(sk, Enc(pk, m)) = m | (pk, sk) ← KeyGen(1λ)] using conditional
probabilities.

Impossiblity of perfect secrecy. From the correctness property, we are ensured that the PKE
scheme behaves weel in an even environment. . .which is clearly unsufficient for real world purposes.
Let discuss informally what a good security property should capture. The first notion that comes to
mind is the one of perfect secrecy: it should be unfeasible for an adversary to recover any information
about m. This idea was first captured by Shannon in the context of information theory.

Definition 2 (Public-key perfect secrecy). An public-key encryption scheme over message spaceM
and ciphertext space C is perfectly secret if for any random variable M overM, C the encryption of
M under a public-key generated by KeyGen, any message m ∈M and any ciphertext c ∈ C, it holds:

Pr(M = m) = Pr(M = m | C = c).

Unfortunately, this appealing security notion cannot be achieved in public-key cryptography.
Intuitively, this is because the cryptographic keys are related to each other in some ways – so that the
cryptographic algorithms work as expected – and one of them is public. This can be made precise
by expliciting an unbounded adverary attacking the perfect secrecy Exo 2 .

Lemma 3. No public-key encryption scheme can be perfectly secure.*

Nevertheless, the adversary we described is arguably inefficient. This encourage to finetune the no-
tion of security by limiting the power an adversary, and deteriorate the concept.

Security of PKE. Let continue the later discussion with more reasonable notion of security. A
first natural notion could be that an adversary is not capable of recovering the message underlying
a specific ciphertext. This gives us the notion of one-way security, written OW. A second notion
that comes to mind deals with indistinguishability: given a ciphertext that may be an encryption of
x or y, an adversary cannot guess in which case we are. Typically, one can think of an encrypted
referendum: if an adversary is able to distinguish an encryption of “YES” from an encryption of
“NO”, this is already a threat. In the case the adversary can choose both plaintexts, this gives us
the notion of indistinguishability security, indicated with IND. In the case the adversary can only
choose one plaintext and the other possible plaintext is sampled at random in the message space, this
gives us the notion of real-or-random security, denoted RoR. Another interesting notion is that of
non-malleability, written NM. Informally, it states that an adversary cannot “deform” a ciphertext
meaningfully, that is producing a new ciphertext from an old one, for which it can predict a relation
on the underlying messages. A corresponding attack scenario could be as follows: in a encrypted
referendum where choices are encoded by bit, an adversary could potentially flip the vote of some-
one – while letting it encrypted. Many other flavours of security could be imagined, eg. where the
attacker is only interested in parts of the plaintext, as its most significant bit.

A crucial point we did not discussed yet is the behavior and computational power of the ad-
versary. It is commonplace to assume it polynomially bounded (ie. we restrict the security study to
efficient adversaries), but this is not the only variable. A first scenario considers passive adversaries,
that will follow the protocol but will try to extract as much information as possible. We denote this
scenario by PASS. In the case of PKE, such an adversary knows the public key and can thus encrypt
plaintexts of its choice. We talk about chosen-plaintext attacks, or CPA in short. In other scenarii,
closer to some real world applications, the adversary can access a decryption oracle. Called on input
c the latter returns the underlying plaintext or⊥ if the decryption fails, in constant time O(1). In
this case, we talk of chosen-ciphertext attacks, or CCA†. As before, many others variants could be
considered.

*Note that this reasoning holds for any public key scheme, and not solely for encryption.
†In the case where the oracle is accessible only before the attacker commits on its challenge, CCA1 is used instead.
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Challenger C AdversaryA
Samples (pk, sk)← KeyGen(1λ)

pk
−−−−−−−−−→

Chooses m0 and m1
m0,m1

←−−−−−−−−−
Samples b←↩$ {0, 1}

Enc(pk,mb)
−−−−−−−−−→

Compute a bit b′

b′

←−−−−−−−−−
Output b′ ?= b (∈ {⊤,⊥})

Figure 1: IND-CPA security game

Combining both aspects, let’s now try to formalize one common security property of PKE:
the indistinguishability-under-chosen-plaintext-attacks property, IND-CPA for short. Before writ-
ing down this property within an experiment formalism, see it as an interactive game between an
adversaryA and a challenger C, as drawn in Figure 1. The game starts with the challenger generat-
ing keys and handling the public key to the adversary. Then, the adversary chooses two messages
m0 and m1 of its choices and gives them to the challenger. The latter samples a bit b ←↩$ {0, 1}
and hands an encryption of mb under the public key to the adversary. Finally,A guess a bit b′ and
sends it back to C. The adversary wins the experiment whenever b = b′. As the naive adversary, that
hands b′ as a tossed coin, wins this experiment with probability 1/2, we focus on the advantage of
an adversary rather than its success probabilty. Basically, it captures “how better” this adversary is
compared to the very naive one.

Implicitly, we considered here an adaptative adversary: the latter propose its challenge (m0, m1)
after learning the public key of the scheme and possibly performing some encryptions. There are
easier variants of security properties, known as selective, where the adversary must commit to its
challenge beforehand.

With all of this in mind, we can precisely define the IND-CPA within the experiment formalism.

Definition 4 (IND-CPA PKE). A PKE is said IND-CPA secure if for any polytime adversary
A its advantage AdvA(GIND-CPA) := |Pr(GInd-CPA(A, λ) → ⊤) − 1/2| is negligible (in
the security parameter). The security game is defined as follows.

G IND-CPA

(pk, sk)← KeyGen(1λ)
(m0, m1)← A(pk)
b←↩$ {0, 1}
b′ ← A(pk, Enc(pk, mb))
If b = b′, then return⊤, else return⊥

1:
2:
3:
4:
5:

Naturally, any combination of aforementioned properties can be formalized similarly. This is
a good warm-up exercise Exo 3 . Some security properties are stronger than others, and some
are incompatible with some extra features one may want for a PKE scheme. We will explore those
incompatibilities and hierarchy of security notions during tutorials.

• 1.1.2 An example of IND-CPA scheme: El-Gamal

The El-Gamal public-key encryption scheme was coined by Taher Elgamal in 1985, and is still the
ciphering system behing GPG, the Gnu Privacy Guard that allows transmission of signed and en-
crypted electronic messages. It relies on the Decicisional Diffie-Hellmann (DDH) problem, which
is semantically close to the Discrete logarithm (DL) problem.
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Underlying mathematical assumptions. Before reducing the IND-CPA security from the hard-
ness of the DDH problem, we first define things properly. Recall that a cyclic group is entirely gen-
erated by the orbit of a generator, and that for a finite group its order denotes the cardinal of the
group.

Definition 5 (DL, CDH, DDH). Let G be a cyclic group of order q, and g a generator of it.
The Discrete Logarithm, Computation and Decisional Difffie-Hellmann problems are defined
as follows.

• DL. Given (G, q, g, ga) for a←↩$ [q], the goal is to recover a.

• CDH. Given (G, q, g, ga, gb) for (a, b)←↩$ [q]2, the goal is to compute gab.

• DDH. Given (G, q, g) and access to an oracle Osamples, decide whether Osamples is
returning samples of the form (ga, gb, gab) or (ga, gb, gc) for (a, b, c)←↩$ [q]3.

Those problems can be hierarchized by reducing them to each other Exo 4 . It seems logical that
the hardness of the problem strongly depend on G Exo 5 . Historical instantiation consider (Z∗

p, ∗)
with p prime, while subgroup of the latter are now considered (quadratic residues)*. Elliptic curves
over finite fields are another widely spread choice.

The scheme. Defining the scheme amounts to precise the algorithms behind the PKE interface.
Here are the algorithms considered in the El-Gamal scheme.

Definition 6 (El-Gamal PKE). The El-Gamal PKE consists in the following three algorithms:

• KeyGen(1λ) produces (G, q, g) – a cyclic group, its order and a generator of it – then samples
x←↩$ Zq and computes h = gx. The secret key is x, the public key is (G, q, g, h).

• Enc(pk, m ∈ G) samples y ←↩$ Zq and returns c = (gy, hy ·m).

• Dec(sk, c = (c1, c2)) returns c2/cx
1 .

It can readily be checked that all those algorithms run in polynomial time and that the scheme
is correct. The main work to be achieved concerns the security proof.

Finally, a proof of security. In order to prove security, we rely on contraposition. We first make
a hardness assumption H and formalize a security property S. Then, we prove ¬S ⇒ ¬H , which
is equivalent to H ⇒ S. Finally, we obtain S by modus ponens.

Proposition 7. Under the assumption the DDH is hard, the ElGamal encryption schme is IND-CPA
secure.

Proof. Let assume that there exists an adversaryA, ie. a polytime algorithm, that wins the IND-
CPA game with non-negligible probability. We build upon an adversaryB against the DDH prob-
lem. The latter will internaly callA and simulate the behavior of a challenger C through SimC .
From the adversary point of view, the behavior of SimC andC have to be the same (otherwise, we
have no guarantee thatAwill succeed in breaking the IND-CPA security of the scheme). Never-
theless, B can access any internal state of SimC and make use of tricks.

A’s world within IND-CPA game A’s world within our reduction

*The non-prime order and the easyness of the decisional variant of the DL problem was limiting.
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This reduction is pretty straightforward. First, the challenger generate a DDH instance, that
is a tuple (G, q, g, gx, gy, gz), and hands it to B. B then simulate the key generation step of
SimC by forwarding (G, q, g, gx) to A, which is run internaly. At some point, she receives
(m0, m1) from A and compute the response of SimC as follows: she samples evenly b ←↩$
{0, 1} and send (c1, c2) = (gy, gz ·mb). Finally, after receivingA’s guess, she output⊤ to C if
the guess is right, and⊥ otherwise.

Let’s now computes the advantage ofB, Adv(B) = |Pr(B RAND−−−−→ ⊤)−Pr(B DDH−−−→ ⊤)|.

• In the RAND case, the quantity z of the DDH instance is sampled uniformly at random
and independantly of other variables. Hence, cipherpart c2 generated by SimC is also
random and independant of other quantities. Hence,A cannot distinguish between the
ciphertexts: its advantage is zero, its success probability 1/2. Finally,B returns⊤ to C with
probability exactly 1/2.

• In the DDH case, the quantity z is equal to xy. It follows that (c1, c2) is a well-formed
Elgamal ciphertext. Hence, the probability that B returns⊤ is exactly the winning prob-
ability of A within the IND-CPA game, which is at non-negligible distance from 1/2 by
assumption.

Finally, it follows that one can reduce an adversaryA against the IND-CPA game into an adversary
against the DDH problem with constant time overhead and achieving the same probability of
success. By contraposition, this concludes the proof. ■

• 1.1.3 The RSA cryptosystem, an history of refinements

Let review another common public-key encryption scheme introduced by Rivest, Shamir and Adle-
man in 1977: the RSA* cryptosystem. While widely known PKE – the RSA acronym often rings a
bell for non-specialists – had progressively been replaced by elliptic-curves based schemes, it is still
extensively used in the industry (most public key infrastructures products rely on RSA) and on the
web (PGP).

The RSA trapdoor permutation Informally, a trapdoor permutation is a bijection from a set to
itself that is easy to compute but hard to invert unless one knows some trapdoor information. More
formally,

Definition 8 (Trapdoor permutation). A family of trapdoor permutations (TP) is tuple three
polytime algorithms (Gen, Eval, Invert) such that

• The generation algorithm Gen takes as input the security paremeter λ and returns a pair
(i, τ) made of a function index and a trapdoor.

• The evaluation algorithm Eval is deterministic and for any index i, the function fi :
x 7→ Eval(i, x) is a bijection over Di.

• The invertion algorithm Invert is deterministic and for any pair i, τ) ← Gen(1λ) it
holds for any x that Invert(τ , Eval(i, x)) = x, ie. x 7→ Invert(τ , x) is precisely f−1

i .

It is said secure if for any PPT adversaryA,

Pr
[

(i, τ)← Gen(1λ), x←↩$ Di,
y ← Eval(i, x) : x = A(i, y)

]
≤ negl(λ).

Before introducing the RSA trapdoor permutation, recall that Euler’s totient function, usually
denoted , is the function associating to any positive integer n the cardinal of the set made of numbers
no greater than n that are relatively primes to n. Amongs remarkable properties of this function,

*Which is readily the acronym of its authors.
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ϕ(n) is the order of the multiplicative group of integers modulo n, written Zn. In particular, from
Euler’s theorem it follows that for any inversible x ∈ (ZN )∗, xϕ(N) ≡ 1 mod N .

So, as mentionned in introduction, Rivest, Shamir and Adleman conjectured the following
function family to be a trapdoor permutation.

Definition 9 (RSA-TP). The RSA trapdoor permutations are defined by the following algorithms.

• Gen(1λ) samples N := pq, with p and q primes being of similar bitsize (depending on λ). It
samples e relatively prime with ϕ(n). It computes d such that ed ≡ 1 mod ϕ(n). Finally, it
returns (N, e), d.

• Eval((N, e), x) returns (me mod N), hence describes a permutation over Z∗
N .

• Invert(d, y) returns (yd mod N).

We call this conjecture RSA in these notes, and this is a problem no harder than the factorisation
problem Exo 6 . Whether those problems are equivalent or not is still an open problem, while it
seems that there is no better (on reasonable set of parameters) way to attack RSA than attacking
FACT.

Definition 10 (FACT, RSA). Let N = pq be a semiprime. The Factorisation and the RSA
problems are defined as follows:

• FACT. Given N , recover p and q.

• RSA. Given e such that gcd(e, ϕ(N)) = 1, where ϕ denotes Euler’s totient function,
and c ∈ Z∗

N , find m such that me = c mod N

Textbook RSA One may remark how close the definition of trapdoor permutation seems to be
from public-key encryption, and that’s exactly the idea behind the scheme known as textbook-RSA.
Morally, the trapdoor will play the role of the secret key: in order to encrypt a message, simply
compute its image through the permutation – the security might comes from the non-inversibility
of the permutation without knowing the trapdoor. More formally, the scheme is as follows.

Definition 11 (Textbook RSA). The textbook RSA scheme is defined by the three algorithms:

• KeyGen(1λ) samples (N, e, d) mimicing Gen’s algorithm of the RSA trapdoor permutations.
It hands (N, e) as the public key, and d as the secret key.

• Enc(pk, m) returns c = me mod N .

• Dec(sk, m) returns m = cd mod N .

This scheme is broken in many ways, and here are some of the simplest ones.
The first attack against textbook RSA is simply that the scheme is not IND-CPA, which is the

basic security notion of a scheme.* Indeed, as a deterministic PKE scheme, it is necessarily vulnerable
to such attacks Exo 7 . In particular, it allows an attacker to search for a specific plaintext – which
is not as costly as it seems in particular contexts: birthday, pincode, ballot, etc. And even without
recovering the corresponding plaintext, deterministic encryption made it easy to decide whether
the same message is encrypted twice. Against another security model, remarking that the scheme is
homomorphic prevents it from being OW-CCA: one could call the decryption oracle on 2c, get m
and finally return m/2.

The second attack takes advantage of the following fact: whenever m is smaller than N1/e, no
modulus reduction is applied to the ciphertext. Hence, computing the e-th root over integers suf-
fices to recover the corresponding plaintext. In practical instantiations of RSA, e is taken as small as
3 for efficiency reasons and would lead a non-negligible part of the message space vulnerable to such

*The OW-CPA property is often considered too weak.
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an attack. A third attack scenario is the one of broadcast encryption, where a message m is sent to
many recipient why different key materials; exception made of e we supposed fixed by the protocol.
Here is how to exploit a collection of cipertexts {ci = me mod Ni)}0≤i<e where the Ni’s are
pairwise coprime by exploiting the Chinese Remainder Theorem we recall here for completeness.

Theorem 12 (Chinese remainder theorem). For (n1, · · · , nk) pairwise coprime, and N =
∏

i ni,
the map x mod N 7→ (x mod n1, · · · , x mod nk) defines a ring isomorphism between the
ring of integers modulo N and the direct product of the rings of integers modulo the ni’s.

Denoting by N∗ the product of the Ni’s, it follows that one can efficiently compute the unique c∗

such that c∗ = me mod N∗. Now observe that m is smaller than the smallest Ni as we supposed
well-formed the ciphertexts, causing me to be smaller than N∗. As no modular reduction occurs,
taking the e-root suffices (again) to recover m.

Paddings and ROM to the rescue For all of those reasons, RSA encryption concretly consists
in two phases: a preprocessing phase during which a message is padded and transformed, and then
an encryption phase following aforementioned algorithms.

A first (depreciated) standard, introduced in 1993 by RSA laboratories, we discuss here is PKCS1-v1.5.
It suggests the use of padding to introduce non-determinism during the ciphering process and cir-
cumvent direct attacks on IND-CPA security. Denoting by k the length of N in bytes, assuming m
to be encoded as an up-to-(k − 11)-bytes word, a message m is padded into

m̃ = 00000000∥00000010∥r∥00000000∥m,

where r is an at-least-eight-bytes-long randomly generated (with none of its bytes being 08), be-
fore being ciphered into c = m̃e mod N . The first 0 block ensures that the encryption block,
converted into an integer, is less than the modulus. Without security proof, it was (and unfortu-
nately still is) widely deployed on web servers and browsers. In 1998, Bleinchenbacher published
an padding oracle attack against PKCS1-v1.5. In this security model, the attacker has access to
a padding oracle Opadding that takes ciphertexts as inputs and returns ⊤ if the padding of the de-
crypted ciphertext is correct*, ⊥ otherwise. It is important to note that in real-life the server not
necessarily hand ⊤ or ⊥, but it suffices that its behavior depends on the validity of the padding
(response time, error throwing, etc.) to turn it into a padding oracle.

Lemma 13 (Bleichenbacher). The PKCS1-v1.5 standard is vulnerable to padding oracle attacks.

Proof. The key observation is that for c a ciphertext, the fact thatOpadding(c) returns⊤ carries
the information that the corresponding plaintext starts with 0x00∥0x02.

For a target ciphertext c = Enc(pk, m̃), the attacker produce a collection of re-randomized
ciphetexts {ci = cre

i = (m̃ri)e mod N}i and submits them to the padding oracle. Letting
B = 28(k−2), the sets of ci’s upon which the oracle returned⊤ are such that 2B ≤ m̃ri ≤ 3B.
This set of equations suffices to recover m̃ efficiently. ■

As a consequence, the proposed standard is not IND-CCA† Exo 8 .
Another padding scheme was proposed in 1994 by Bellare and Rogaway, and was called OAEP

for Optimal Asymmetric Encryption Padding. It is build upon two hash functions G and H , that
respectively compress and extend randomness of inputs (ie. with range respectively smaller/wider
than their definition domain). For a message m, the corresponding ciphertext is roughly Exo 9 :

m̃e mod N , where m̃ = ((m∥0)⊕G(r)∥r ⊕H((m∥0)⊕G(r))),

where 0 denotes null bytes, r is a random bit string, and ⊕ denote the (bitwise) XOR operator.
This padding can efficiently be removed Exo 10 , which make it suitable for cryptography. In the

*That is the plaintext starts with the null and “2” bytes, followed by at least 8 non-null bytes and remaining bytes
starting with a null byte.

†In fact, it is not IND-CPA neither, but this is beyond the scope of those lecture notes.
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case where hash functions are idealized*, the padding scheme turns the textbook RSA scheme into
a CCA secure scheme under the RSA hypothesis†.

Lemma 14 (Fujisaki-Okamoto-Pointcheval-Stern). In the random oracle model, RSA-OAEP is IND-
CCA secure if the RSA problem is hard.

This ends our (small) RSA journey.

• 1.1.4 Generically increasing security: the Fujisaki-Okamoto transform

Ongoing work

• 1.1.5 A word about key-encapuslation mechanisms

Ongoing work

This blank space will be removed as soon as 1.1.4 and 1.1.5 subsubsections are complete.

*This will be precised in the next subsection.
†Initially, the OAEP transformation was claimed secure for any underlying trapdoor permutation. Unfortunately,

a flaw in the original proof causes the later statement to be incorrect. The refined transformation OAEP+, of Shoup,
achieves what OAEP aimed to.
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■ Going further
Here are a few bibliographic references upon which the PRS is partially based. You may explore
them for further insight. You can also reach us by email.

• Katz, J., & Lindell, Y. (2021). Introduction to modern cryptography (3rd ed.). CRC Press.

• Vaudenay, S. (2006). A Classical Introduction to Cryptography: Applications for Communica-
tion Security. Springer.

• Smart, N. P. (2016). Cryptography Made Simple. Springer.

• Boneh, D., Shoup, V. (2023). A Graduate Course in Applied Cryptography (draft 0.6). Avail-
able online.
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■ Exercises left along the way

Exo 1 Give an example of non-correct PKE scheme. Give an example of a correct PKE scheme that won’t
verify any reasonable security property.

Exo 2 Prove Lemma 3 formaly.

Exo 3 Give formal security games for the following properties: OW-CPA, IND-CCA, NM-CPA.

Exo 4 Produce as many (simple) reductions as you can between those three problems. Write down at least
one of them formally.

Exo 5 Give an example of a group where the DL problem is easy.

Exo 6 Show that RSA reduces to FACT.

Exo 7 Show that any IND-CPA PKE scheme has a non-deterministic encryption function.

Exo 8 Prove that any IND-CCA secure scheme is secure against padding oracle attacks.

Exo 9 Assuming that hash functions operate on bitstrings, precise their range/domain and the length of
m.

Exo 10 Given a padded message m̃, show how one can recover the underlying message m back.
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