

Public-Key Encryption

from the Lattice Isomorphism Problem

Joint work with Adeline Roux-Langlois (CNRS, Greyc, AmacC)

and Alexandre Wallet (Inria, IRISA, Capsule)

LÉO ACKERMANN

October 2023

Standard lattice-based cryptography

Euclidean lattices

A lattice Λ is a discrete additive subgroup of \mathbb{R}^n . It can always be written $\Lambda(B) = \sum_i b_i \mathbb{Z}$.

The more the merrier

The bases are not unique: $\Lambda(B) = \Lambda(B)$.

Standard lattice-based cryptography

Euclidean lattices

A lattice Λ is a discrete additive subgroup of \mathbb{R}^n . It can always be written $\Lambda(\mathbf{B}) = \sum_i \mathbf{b}_i \mathbb{Z}$.

The more the merrier

The bases are not unique: $\Lambda(B) = \Lambda(B)$.

Hard lattice problems

LEARNING WITH ERRORS (LWE).

SHORT INTEGER SOLUTION (SIS).

Lattice Isomorphism Problem

b Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\wedge = O \cdot \wedge'$.

Lattice Isomorphism Problem

- **Given** \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\wedge = O \cdot \wedge'$.
- Given *B* and *B'*, find (if any) $O \in O(\mathbb{R}^n)$ such that $B = O \cdot B'$.

Lattice Isomorphism Problem

- **F** Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\wedge = O \cdot \wedge'$.
- Given B and B', find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.

Lattice Isomorphism Problem

- Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\wedge = O \cdot \wedge'$.
- Given B and B', find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.
- Given *B* and *B'*, decide whether $\Lambda(B) \cong \Lambda(B')$ or not.

Given B, B_0 and B_1 , decide whether $\Lambda(B) \cong \Lambda(B_0)$ or $\Lambda(B) \cong \Lambda(B_1)$.

▷ Decision, dLIP
▷ Distinguish, △LIP

LIP flavours

The *public key* consists in any lattice Λ and a basis *B* of $O \cdot \Lambda$. The secret key is the rotation O.

LIP flavours

The *public key* consists in quadratic forms (Q, Q') such that $Q' = U^T Q U$ for $U \in GL_n(\mathbb{Z})$. The secret key is U.

LIP flavours

- The *public key* consists in quadratic forms (Q, Q') such that Q' = U^TQU for U ∈ GL_n(Z). The secret key is U.
- Schemes can be instantiated with geometry of *remarkable lattices* (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.

LIP flavours

- The *public key* consists in quadratic forms (Q, Q') such that Q' = U^TQU for U ∈ GL_n(Z). The secret key is U.
- Schemes can be instantiated with geometry of *remarkable lattices* (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.

Existing schemes

Authentication scheme

LIP flavours

- The *public key* consists in quadratic forms (Q, Q') such that Q' = U^TQU for U ∈ GL_n(Z). The secret key is U.
- Schemes can be instantiated with geometry of *remarkable lattices* (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.

Existing schemes

- Authentication scheme
- Key-encapsulation mecanism

LIP flavours

- The *public key* consists in quadratic forms (Q, Q') such that Q' = U^TQU for U ∈ GL_n(Z). The secret key is U.
- Schemes can be instantiated with geometry of *remarkable lattices* (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.

Existing schemes

- Authentication scheme
- Key-encapsulation mecanism
- Signature (including Hawk submission)

LIP flavours

- The *public key* consists in quadratic forms (Q, Q') such that Q' = U^TQU for U ∈ GL_n(Z). The secret key is U.
- Schemes can be instantiated with geometry of *remarkable lattices* (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.

Existing schemes

- Authentication scheme
- Key-encapsulation mecanism
- Signature (including Hawk submission)

Our work

Public-key encryption scheme

High-level idea

Follows *Dual-Regev* cryptosystem flavour:

High-level idea

Follows Dual-Regev cryptosystem flavour:

 $\textbf{P} \quad \mathcal{C} = (0,1)^n, \operatorname{Enc}(0) \sim (D_{\Lambda} \mod \mathcal{C}), \operatorname{Enc}(1) \sim \mathcal{U}(\mathcal{C})$

High-level idea

Follows Dual-Regev cryptosystem flavour:

Correctness

With overwhelming probability, Enc(1) is far enough from $(0, 1)^n$ vertices.

High-level idea

Follows Dual-Regev cryptosystem flavour:

Correctness

With overwhelming probability, Enc(1) is far enough from $(0, 1)^n$ vertices.

Security

Under ΔLIP_{pke} hypothesis, the scheme is IND-CPA secure.

Public-Key Encryption

from the Lattice Isomorphism Problem

- Figures are either mine or free pictures from Freepik. See e.g. [1], [2].
- The colors are from the **Gruvbox** color palette.
- The E8 lattice comes from [3].