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ABSTRACT

The technological advancements of the digital era paved the way
for the facilitation of electronic voting (e-voting) in the promise of
efficiency and enhanced security. In standard e-voting designs, the
tally process is assigned to a committee of designated entities called
talliers. Naturally, the security analysis of any e-voting system with
tallier designation hinges on the assumption that a subset of the
talliers follows the execution guidelines and does not attempt to
breach privacy. As an alternative approach, Kiayias and Yung [PKC
’02] pioneered the self-tallying elections (STE) paradigm, where the
post-ballot-casting (tally) phase can be performed by any interested
party, removing the need for tallier designation.

In this work, we explore the prospect of decentralized e-voting
where security is preserved under concurrent protocol executions.
In particular, we provide the first comprehensive formalization
of STE in the universal composability (UC) framework introduced
by Canetti [FOCS ’01] via an ideal functionality that captures re-
quired security properties such as voter privacy, eligibility, fairness,
one-voter one-vote, and verifiability. We provide a concrete instan-
tiation, called E-cclesia , that UC realizes our functionality. The
design of E-cclesia integrates several cryptographic primitives
such as signatures of knowledge for anonymous eligibility check,
dynamic accumulators for scalability, time-lock encryption for fair-
ness and anonymous broadcast channels for voter privacy. For the
latter primitive, we provide the first UC formalization along with
a construction based on mix-nets that utilises layered encryption,
threshold secret sharing and equivocation techniques.

Finally, we discuss deployment and scalability considerations
for E-cclesia . We present preliminary benchmarks of the key
operations (in terms of computational cost) of the voting client and
demonstrate the feasibility of our proposal with readily available
cryptographic tools for mid-sized elections (∼100,000 voters).
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1 INTRODUCTION

In democratic societies, a wide spectrum of people with respect
to their beliefs and social status can participate equally in shap-
ing decisions that affect governance both at a national or smaller
(e.g., unions, corporations, academic institutes, associations) scale.
The means for achieving this is voting, which is essential so that
governance can operate in a transparent and fair way. With the
technological advancements of the digital era, electronic voting (e-
voting) has been introduced, promising better efficiency, enhanced
security and superior transparency than traditional voting.

Arguably, one critical aspect of e-voting design is to determine
the level of centralisation desired (or feasible), given that conflicts

naturally arise between scalability on the one hand, and security
and privacy on the other. In principle, election tasks such as setup,
registration, vote collection, tally, and result announcement, can
be carried out in one of the three following manners in terms of
decentralization: (i) completely centralized by a single authority,
(ii) by a committee of designated entities, or (iii) fully decentralized
such that the voters themselves are responsible for performing
the task. Depending on the election setting, decentralization may
be a requirement for some task, but considered impractical for
another one. For instance, distributing trust for voter privacy during
tallying is often highly recommended, yet one cannot expect a direct
consensus among voters on a large scale election setup.

In this work, we explore the prospect of decentralized tallying.
Since taking the centralized approach often results in privacy and
robustness attacks [7, 67] on the authorities that constitute single
points of failure, most state-of-the-art e-voting systems include a
committee of designated parties called talliers in charge of tallying
the result of the election (e.g., [2, 18, 20, 22, 23, 25, 26, 39, 44, 60]).
In what we call tallier designation e-voting, security hinges on the
assumption that a subset of the talliers follows the execution guide-
lines and does not attempt to breach privacy. Indeed, in any e-voting
system of this type, privacy is trivially violated if all the talliers
collude in order to jointly retrieve the voters’ preferences (typically,
by combining their partial decryption keys). Moreover, in the case
where the voters post their votes to a publicly accessible bulletin
board (e.g., [2, 20, 25, 26, 39, 44]), then partial results can be leaked
during the ballot casting period (fairness violation) under full tallier
collusion. Hence, while distributing trust among talliers strength-
ens the system w.r.t. privacy and robustness, the introduction of
assumptions regarding the tallier corruption threshold to argue
about security cannot be considered ideal. In fact, real world exam-
ples indicate that designated tallying authorities can be the weak
link in the system’s overall performance and security, either due
to benign errors or by becoming high priority targets of attackers
(e.g., the cases of the tallying machines in Georgia, USA [50], and
Estonia [4]). Towards overcoming the limitations present in tallier
designation e-voting, we explore the potential of an alternative ap-
proach expressed by the self-tallying elections (STE) paradigm [43].
Namely, an e-voting system is self-tallying if the post-ballot-casting
(tally) phase can be performed by any interested party. Designing
STE systems that satisfy a list of standard e-voting security proper-
ties such as eligibility, fairness, voter privacy, and verifiability raises
a number of challenges. Specifically, the main challenges of STE are
(i) guaranteeing that no voter (or coalition of voters) can boycott
the election; (ii) no intermediate results are being leaked during the
ballot casting phase (fairness); (iii) no vote can be linked back to the
voter that cast it (voter privacy). Unfortunately, the existing STE
proposals [30, 34, 36–38, 42, 43, 48, 49, 51, 54, 64, 66, 69] lack formal
treatment and/or suffer from limitations such as being susceptible
to abort, in the sense that there is a moment in the execution where
the participation of all active voters is required for tally to take



place, or requiring a trusted party to be involved during voting so
that fairness can be achieved.
Contributions:We tackle all the aforementioned design challenges
by deploying a formal framework where security is preserved under
concurrent executions. In particular, we present E-cclesia , an STE
protocol that constitutes a fine-grained integration of fundamen-
tal and special cryptographic tools (e.g., signatures of knowledge,
non-interactive commitments, dynamic accumulators, time-lock en-
cryption, anonymous broadcast), and is provably secure in Canetti’s
universal composability model (UC) [13] (cf. Appendix A).

We summarize in more details our contributions below.
1. UC formalization of STE and modular design.We formal-
ize the concept of STE through the ideal functionality FSTE. Our
functionality captures correctness and standard e-voting proper-
ties such as eligibility, fairness, voter privacy, one-voter one-vote,
and verifiability. Specifically, we only allow eligible voters to vote
no more than once. Regarding privacy and fairness, we only leak
to the simulator the length of the message. In the casting phase,
the voters’ identity remains hidden. The ballots are opened only
after the end of the casting phase and thus we guarantee fairness.
Finally, during the tally phase, anyone can retrieve and/or verify
the election result which the adversary cannot alter or drop, thus
correctness is satisfied.

We break down FSTE into two smaller modules named Felig and
Fvm. The functionality Felig is responsible for the eligibility part of
FSTE (e.g., credential generation and ballot authentication), while
Fvm is responsible for the vote management part of FSTE (e.g., ballot
generation, casting, and opening). Our modular approach facilitates
easier future updates without the need for reproving the security
of the whole STE protocol.
2. UC realization of FSTE: the E-cclesia protocol. We present
E-cclesia , a self-tallying protocol that UC realizes FSTE. In its de-
sign, E-cclesia combines several cryptographic primitives such
as time-lock encryption (TLE) to guarantee fairness, signatures of
knowledge (SoK) and anonymous broadcast channels to guaran-
tee eligibility, privacy, and the one-voter one-vote property, and
dynamic accumulators for efficiency. E-cclesia relies on random
oracles [53], common reference string [15], broadcast channels [31],
and a global clock [5].
3. UC formalization and realization of anonymous broadcast.

We provide the first UC treatment of the anonymous broadcast
notion by introducing the ideal functionality Fan.BC and a protocol
based on mix-nets [18] that UC-realizes Fan.BC in the presence of
(plain) broadcast channels and a programmable random oracle. In
our protocol, we split the messages into shares [62] and each share
is layer encrypted and sent to a row of stratified mix network [29].
In order to achieve UC realization, we borrow techniques from non-
committing encryption [53] for correct opening of the messages.
In addition, we apply cover traffic to hide the senders’ activity. The
shares are randomly reordered by each layer of the mix servers and
after some delay, they are broadcast to all parties, thus preventing
timing attacks [40]. Although Fan.BC and the protocol that UC
realises it fit the purposes of E-cclesia , it is a novelty beyond the
concept of STE and we believe it is of independent interest.
4. Benchmarking of (components of) E-cclesia . We eval-
uate the feasibility and scalability of E-cclesia . We propose a
practical deployment strategy that introduces a computationally

powerful (not trusted) server for the tallying of votes (i.e. TLE de-
cryptions), alleviating the need for intensive computations from
resource-constrained voting clients. Voters are only required to per-
form computationally less demanding verification of tallied ballots.
As our preliminary benchmarks suggest, this verification as well
as ballot generation are computationally reasonable and within
reach. Specifically we instantiate the TLE scheme by Pietrzak’s
VDF [56] combined with AES encryption according to Rivest et
al.’s scheme [58], and for the SoKs we use Groth’s NIZK proof sys-
tem [35], and we benchmark the computationally critical voters’
operation: (a) the SoK signing operations performed by the voters
for generating their eligible encrypted ballot, and (b) the verifica-
tion of correct TLE decryptions and of SoK signatures performed
by the voters to verify the final tally of the election. Our initial
benchmarks indicate that with readily available state-of-the-art
libraries these can be made practical and scalable at least up to
mid-sized elections (∼100,000 voters).

2 RELATEDWORK

For a recap of the UC framework, cf. Appendix A.
Tallier designation e-voting. E-voting research spans over four
decades [2, 18, 20–26, 39, 44, 60]. E-voting design faces the chal-
lenge of capturing (a reasonable subset of) security properties (e.g.,
eligibility, verifiability, fairness, voter privacy, receipt-freeness, co-
ercion resistance) that may be conflicting. In the standard design
approach, the execution of election processes such as setup, regis-
tration, vote collection, tally, and result announcement is assigned
to designated entities. As already mentioned, under a full tallier
collusion setting, tallier designation e-voting systems [2, 18, 20,
22, 23, 25, 26, 39, 44, 60] cannot preserve voter privacy, and not
even fairness when vote collection is carried out via posting to a
bulletin board [2, 20, 25, 26, 39, 44]. We stress that fairness is always
violated if the talliers additionally collude with the vote collection
authorities (e.g., ballot box) to retrieve the votes prior to the tally
phase. On the contrary, E-cclesia satisfies fairness unconditionally
w.r.t. corruption setting, i.e., it relies only on the security of the
underlying cryptographic primitives (TLE).
Self-tallying voting. The STE notion was introduced in [43], and
fairness was already pointed out as one of the challenges; the last
voter can learn the (partial) election outcome before choosing their
vote which may lead to the following issues: the last voter 1) adapts
her vote according to the partial results, or 2) aborts, where an
aborting voter prevents the other voters from performing tally. The
construction in [43] addresses Issue 1 by considering a trusted party
that casts a final “dummy vote”, and Issue 2 by including an addi-
tional “recovery” round, yet in that round all remaining voters must
participate. Subsequent works based on the ideas of [43] have the
same limitations [30, 34, 64, 69]. In [42] and [51] (the latter presents
an implementation of [37]), commitments are deployed to confront
the adaptivity of the last voter. Moreover, any construction that
relies on a recovery round [36, 42, 48] is susceptible to abort. Al-
ternatively, enforcing financial incentives to achieve the necessary
participation of all voters has been proposed in [51].

Regarding security modeling, we observe that in the literature,
there is lack of a formal framework for the desired STE proper-
ties [30, 34, 36–38, 42, 43, 48, 49, 51, 54, 66, 69] (only ballot secrecy
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is formalized in [42, 48]). A more formal approach can be found
in [64]. Specifically, the authors define an ideal functionality for
e-voting that captures several properties such as correctness, eligi-
bility, and privacy, and a separate definition for universal verifiabil-
ity. The modeling in [64] has limitations, as the said functionality
(a) allows a single voter to cause the whole election to abort; (b)
does not capture timing attacks for all tally functions (e.g., individ-
ual handling of votes); (c) lacks detailed formal description (e.g.,
description of token handling in the UC framework); (d) considers
the list of eligible voters as a fixed parameter, rather than an input
to the execution that varies per session.

The use of TLE for constructing STE has been suggested in [48].
In [49], self-tallying voting is proposed as an application of homo-
morphic time-lock puzzles, without further security analysis.
Anonymous broadcast channels. The concept of anonymous
broadcast was first studied in the context of DC-nets [19, 33, 65]
that offer unconditional security but typically have limitations such
as message drop due to collisions, vulnerability to jamming attacks,
and/or quadratic complexity for broadcasting a single bit. Several
anonymous broadcast protocols have been proposed, yet their anal-
ysis is under security models that do not support composition. The
protocol in [34] is based on ideas of the STE construction in the
same work. In [68], the authors build their protocol on top of the se-
cure multiparty computation in [27]. In [47], the authors propose an
anonymous broadcast implementation based on DC-nets. Moreover,
the security analysis of the construction in [52] is inspired by the
ideal/real world paradigm; however, the ideal functionality in [52]
is not compatible with the UC setting (there is no environment that
provides the parties with inputs over time).

3 PROTOCOL EXECUTION

In this section, we provide a concise description of the E-cclesia
self-tallying elections (STE) protocol. First, we present the cryp-
tographic building blocks that our protocol utilizes, the parties
involved in an execution, and the intuitive security properties that
it achieves. Throughout the paper, we use _ as security parameter.

3.1 Cryptographic building blocks

The E-cclesia protocol design encompasses a delicate integration
of a set of cryptographic primitives. Below, we outline these build-
ing blocks’ operations and refer the reader to the full description
of the corresponding ideal functionalities.
– We assume the existence of a global clock that synchronizes all
entities involved in the execution (cf. Figure 5 and [5] for the func-
tionality Gclock). The time Cl increases when all entities are ready
to advance in time and can be read by anyone upon request.
– A random oracle (RO) (cf. Figure 6 and [53] for the functionality
FRO) models the behavior of a randomly sampled function with
some domain 𝐴 and range 𝐵; The queries to the RO are responded
with a random value in a consistent manner, i.e., querying for the
same argument will result in the same response.
– A common reference string (CRS) (cf. Figure 7 and [13] for the
functionality FCRS) models a (structured) randomness 𝑟 shared
across all parties in the execution. Any party can obtain 𝑟 from the
CRS functionality upon request.

– We use the broadcast (BC) channel functionality FBC of [31] for
message delivery in the pre-voting period (cf. Figure 8). This BC
channel considers communication where the sender is authenticated.
– We introduce an anonymous broadcast channel, where a sender
party 𝑃 can broadcast a message𝑀 to all parties in the execution
anonymously, i.e., without 𝑃 ’s identity being disclosed. In Subsec-
tion 6.1, we formalize the notion (cf. Figure 2) and present a provably
secure anonymous broadcast protocol based on mix-nets [18].
– We make use of non-interactive commitments (NICs) (cf.Figure 9
and [10] for the functionality FNIC) that are (i) binding and (ii)
trapdoor (thus, also hiding), such as the Pedersen scheme [55].
– We utilize signatures of knowledge (SoKs) (cf. Figure 10 and [17]
for the functionality FSOK), so that the voters prove their eligibility
without revealing their identity. In SoKs, anyone (and only them)
holding a witness𝑤 for a statement 𝑥 in some language 𝐿 is able to
produce a signature 𝜎𝑚,𝑥,𝐿 on a message𝑚 that verifies correctly.
– We deploy a secure accumulator, a primitive that allows the com-
pact representation of a set of elements, that is additive (i.e., it
supports only addition of elements to the set) and positive (i.e., it
supports membership proofs that a certain element is in the set).
We refer the reader to Subsection 6.2 for our formal UC treatment
of accumulators that is along the lines of [6]. In our concrete pro-
tocol instantiation, we choose the secure hash-based accumulator
construction in [57].
– To realize a secure STE construction, we turn to a special type of
encryption, called time-lock encryption (TLE) (cf. Figure 11 and [3]
for the functionality FTLE). In TLE, the encryption algorithm takes
as input a message𝑚 and some time difficulty 𝜏dec and outputs a
ciphertext 𝑐 . The decryption algorithm allows the decryption of
𝑐 only after time 𝜏dec has elapsed. Decryption is available to any
party who has a decryption witness 𝑤𝜏dec that can be produced
via some publicly known process (in our protocol, the witness is
produced after the party has made a specific number of calls to
a RO). In particular, we make use of the TLE construction in [3].
We denote the pair of encryption and decryption algorithms by
(𝑒FRO , 𝑑FRO ), where FRO is the RO associated with the algorithms.
– To formally capture the parties’ computational restrictions in the
UC setting, we invoke a wrapper functionality,W𝑞 , (cf. Figure 12
and [3]) that is parameterized by a number of queries 𝑞 and a
random oracle. Informally, the wrapper restricts the access to the
RO by allowing parties to call the RO only up to 𝑞 number of times
per round (clock tick).

3.2 Parties

An execution of the E-cclesia protocol comprises four election
phases Setup, Credential generation, Cast, and Tally. The par-
ties during the phases of a protocol execution are:
– The setup authority (SA) that is active only prior to the voting pe-

riod. Specifically, during Setup, SA is responsible for providing the
election parameters, that include the list of eligible voters, the set
of valid election preferences, and the period of each election phase.
– The voters 𝑉1, . . . ,𝑉𝑛 . Each voter engages as follows:

• In Setup, she receives the election parameters from SA.
• In Credential generation, if she is eligible, she interacts
with SA to obtain a unique voting credential.
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• InCast, if she is eligible, she generates a ballot for her choice
and broadcasts the ballot to all voters.
• In Tally, she computes the tally that corresponds to the set
of ballots she received from other eligible voters.

In our threat model, the voters can be statically corrupted while SA
remains honest.

3.3 Desired security properties

Intuitively, the security properties that E-cclesia satisfies (and any
other STE system should satisfy) are the following:

(1) Correctness: Every honestly cast vote will be included in the
tally set which is the same for all honest voters.

(2) Eligibility: Only eligible voters’ votes will be included in the
tally set of each honest voter.

(3) Fairness: During the Cast phase, no party can learn some
partial result.

(4) Voter Privacy: The (honest) voters’ identities cannot be linked
to their votes.

(5) One voter-one vote: Only one vote per (eligible) voter can be
included in the tally set of each honest voter.

(6) Verifiability: Every voter can verify that the result corre-
sponds to the ballots broadcast in the Cast phase, subject to
the eligibility and one voter-one vote properties [46].

The aforementioned six properties are formally captured via the
description of our ideal STE functionality (cf. Section 4).

3.4 Protocol overview

An execution of E-cclesia considers two distinct ROs, denoted by
F 1
RO and F 2

RO. All parties have the description of an accumulator
scheme Σacc. In addition, all voters have the description of a NIC
scheme ΣNIC, a SoK scheme ΣSoK, a pair of the TLE encryption and
decryption algorithms (𝑒F2

RO
, 𝑑F2

RO
) of [3] and can access F 1

RO, F
2
RO.

In the beginning of the execution, SA is given the set of eligible
voters Velig, the set of valid election preferences O, and two time
moments 𝑡cast, 𝑡open. The four phases are executed as follows:
Setup. First, SA checks that Velig ⊆ V and 𝑡cast < 𝑡open. If both
checks succeed, then it does (if not, it aborts):

(1) Given 𝑡cast, 𝑡open and a pre-known value delay_cast, it sets
®𝑡 := (𝑡cast, 𝑡open, delay_cast) that specifies the beginning and
the end of all subsequent election phases.

(2) It sets the voting parameters as vote.par := (Velig,O, ®𝑡).
(3) It broadcasts vote.par to all voters.
(4) It runs the generation of the initial accumulator value 𝑎0.
(5) It sets the registration parameters as reg.par := (Velig,O, ®𝑡, 𝑎0).
(6) It broadcasts reg.par to all voters.

Upon receiving (SA, vote.par) and (SA, reg.par) from the (authen-
ticated) broadcast channel, the voter 𝑉 stores vote.par, reg.par.
Credential generation. The voter 𝑉 reads the time Cl from the
global clock and checks that the credential period is running. If so,
then she does:

(1) She randomly samples a message cr from the commitment
message spaceM and creates a commitment for cr, denoted
by ĉr, using the randomness aux.

(2) She broadcasts ĉr to all voters.

(3) Upon receiving (𝑉 ∗, ĉr∗)) from the broadcast channel dur-
ing the Credential generation phase, she stores the pair
(𝑉 ∗, ĉr∗), as long as (i) 𝑉 ∗ ∈ Velig and (ii) she has never
received a similar message from 𝑉 ∗ before.

Cast. Each (honest and eligible) voter 𝑉 engages in the voting
process once by generating and casting an authenticated ballot 𝑣
for her preference 𝑜 ∈ O. Specifically, 𝑉 reads the time Cl from the
global clock and checks that the casting period is running. If so,
then she does:

(1) She chooses a randomness 𝑟1 and uses 𝑟1 to produce RO
queries {𝑥𝑘 }

𝑝2 (_)
𝑘=1 , for some polynomial 𝑝2 (·). These queries

are necessary for the creation of a TLE “puzzle” which solu-
tion will lead to the ballot opening during Tally phase.

(2) She makes the queries {𝑥𝑘 }
𝑝2 (_)
𝑘=1 to F 1

RO that is wrapped

byW𝑞 and receives the responses {𝑦𝑘 }
𝑝2 (_)
𝑘=1 . These queries

are used for the creation of a puzzle, associated with the
vote encryption (see below). The fact that these queries are
wrapped by the functionality wrapperW𝑞 models the lim-
ited resources each party has in her disposal each round.

(3) She runs the encryption algorithm 𝑒F1
RO

on input the ran-

domness 𝑟1, the puzzle pairs {(𝑥𝑘 , 𝑦𝑘 )}
𝑝2 (_)
𝑘=1 , and the time

difficulty 𝑡open − (Cl + 1), and receives a TLE ciphertext 𝑐1.
(4) She queries a different instantiation of RO F 2

RO
1 for 𝑟1 and

receives a response ℎ. Then, she sets 𝑐2 ← ℎ ⊕ 𝑜 .
(5) She queries F 2

RO for 𝑟1 | |𝑜 (where | | denotes concatenation of
strings) and receives a response 𝑐3.

(6) She sets the ballot as 𝑣 ← (𝑐1, 𝑐2, 𝑐3).
(7) She runs ballot authentication for 𝑣 as follows:

(i) She computes the accumulator for all received credential
commitments (including her own) according to the order
these were received 2, by adding one commitment at a step
and storing the intermediate accumulator values for each
step. For ease of notation, assume that during the Creden-
tial generation phase, the voters𝑉1, . . . ,𝑉𝑡max broadcast the
commitments ĉr1, . . . , ĉr𝑡max and that for some 𝑘 , 𝑉 = 𝑉𝑘 .
(ii) Upon completing the addition of all received commit-
ments, she updates the accumulator witness for the commit-
ment ĉr = ĉr𝑘 of her own credential cr and receives the new
witness𝑤 r̂c𝑘

𝑘
.

(iii) She computes a SoK, 𝜎 , for the ballot 𝑣 . The SoK is pro-
duced under the statement 𝑥 = (cr, 𝛼𝑡max ), where 𝛼𝑡max is the
final accumulator value, which is computed identically for

all voters, and the SoK witness𝑤 = (ĉr, aux,𝑤 ĉr𝑘
𝑘
).

(8) She anonymously broadcasts (𝑣, cr, 𝜎) to all voters.
(9) She stores any triple (𝑣∗, cr∗, 𝜎∗) she receives from the anony-

mous broadcast channel during the Cast phase.
Puzzle solving: Before completing her part in a round (clock tick), the
voter 𝑉 engages in the puzzle solving procedure for all the puzzles
that are related to the ballots she has received from the anonymous
broadcast channel. In particular, by parsing a ballot 𝑣∗ that she
has just received as (𝑐∗1, 𝑐

∗
2, 𝑐
∗
3), 𝑉 can extract a puzzle included in

1We use a different instantiation of RO so that our encryption is equivocable.
2Note that the broadcast channel we use (cf. Figure 8 and [31]) guarantees that all
voters received each other’s credentials in the same chronological order.
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𝑐∗1 which solution will produce the TLE decryption witness𝑤∗𝑡open ,
necessary for opening 𝑣∗ at Tally phase. During the puzzle solving
procedure, 𝑉 makes oracle queries to the wrapped RO F 1

RO, under
the restrictions thatW𝑞 imposes, i.e., the queries can be parallelized
for all puzzles, but no more than 𝑞 queries can be made per round.
The idea is that each puzzle is created in chain-based manner, in
the sense that the response of the 𝑖-th query becomes the 𝑖 + 1-th
query, which implies that each puzzle will be solved sequentially

after some well-defined time has elapsed (i.e., with time difficulty
adjusted such that time 𝑡𝑜𝑝𝑒𝑛 has been reached).
Tally. The voter 𝑉 reads the time Cl from the global clock and
checks that the tally period is running. If so, then she computes the
tally by executing the following steps:

(1) For every triple (𝑣∗, cr∗, 𝜎∗) she has received during the
Cast phase, she verifies the SoK 𝜎∗ for 𝑣∗ under the state-
ment (cr∗, 𝛼𝑡max ). If the verification is successful, she adds
(𝑣∗, cr∗, 𝜎∗) to the tally set. In this step, 𝑉 discards any re-
ceived triple such that the included credential does not corre-
spond to any accumulated commitment value. However, note
that after this step is completed, the tally setmay containmul-
tiple triples (𝑣∗1, cr

∗
1, 𝜎
∗
1 ), . . . , (𝑣

∗
`∗ , cr

∗
`∗ , 𝜎

∗
`∗ ) that were broad-

cast by the same (dishonest) voter.
(2) She discards multiple triples by pairwise checking whether

the received triples include credentials that match. Namely,
for any two triples (𝑣∗, cr∗, 𝜎∗) and (𝑣∗∗, cr∗∗, 𝜎∗∗) such that
cr∗ = cr∗∗, she discards the triple she received last out of
those two. Clearly, after this pairwise check is completed, all
except one of triples that correspond to the same credential
will be removed from the tally set.

(3) After the tally set has been “filtered” regarding multiple
triples, 𝑉 decrypts every ballot 𝑣∗ = (𝑐∗1, 𝑐

∗
2, 𝑐
∗
3) of a triple

(𝑣∗, 𝜎∗, cr∗) in the tally set as follows:
(i) She runs the TLE decryption algorithm 𝑑F2

RO
on input

𝑐∗1 and the corresponding decryption witness𝑤∗𝑡open and re-
ceives the output 𝑟∗1 .
(ii) She queries F 2

RO for 𝑟∗1 and receives a response ℎ∗. She
extracts the election option as 𝑜∗ ← ℎ∗ ⊕ 𝑐∗2 .
(iii) She verifies the validity of 𝑜∗ by first checking that
𝑜∗ ∈ O, and then querying F 2

RO for 𝑟∗1 | |𝑜
∗ and checking

if the response matches 𝑐∗3 . If so, then she records 𝑜∗ as valid.
(4) She returns as election tally the set of all options that have

been recorded as valid during the execution of Steps 3(i)-(iii).
In Appendix D, we informally discuss the details that render our
protocol secure w.r.t. the properties listed in Subsection 3.3.

4 THE FSTE FUNCTIONALITY
In this section, we describe the functionality FSTE which captures
our security requirements for STE elections (correctness, eligibility,
fairness, voter privacy, one voter-one vote, verifiability). The func-
tionality FSTE interacts with the setup authority SA, the voters in
the set V = {𝑉1, . . ., 𝑉𝑛} and the simulator S. It is summarized in
the next paragraphs and is formally presented in Figure 1.

The functionality is parameterized by SA, the set V, an integer
value delay_genwhich shows the number of rounds that are needed
for the generation of the ballot, an integer value delay_cast which

shows how many rounds a message needs to reach its recipient
from the time of casting, and the predicate Status that given the
current time Cl, the time values that define the election, and an
election phase, outputs ⊤ if that phase is active or ⊥ otherwise.

In the Setup phase, the functionality registers the set of eligible
voters Velig, the set of valid election preferencesO, and the duration
of the election (in the time vector ®𝑡 ), upon request from SA and the
permission of S.

The Credential generation phase is active for every Cl such
that Status(Cl, ®𝑡,Cred) = ⊤. In this phase, each credential request
from an eligible voter 𝑉 is sent to S. If S replies with ready, then
𝑉 is marked as ready to vote.

TheCast phase is active for everyCl such that Status(Cl, ®𝑡,Cast) =
⊤. In this phase, if a voter is ready to vote, FSTE leaks to the simula-
tor S the length of the vote and a fresh random value tag. The latter
is necessary as we allow S to update this message with a ciphertext
at later stages. Thus, S needs a reference point for updating that
message without getting the message itself (preserving privacy).

Each time FSTE receives a command message it follows the de-
layed ballot generation and casting subroutine. Specifically, FSTE
checks if by the time it received a cast ballot request from an honest
voter𝑉 the time for ballot generation delay_gen has elapsed. Then,
it checks if the ballot can still be cast by executing the predicate
Status for the current time Cl. If so, FSTE includes that ballot both
into the lists of cast ballots and the ballots pending for reception
along with the current recording time Cl. Then, it checks for every
ballot in the list of ballots pending for reception if delay_cast time
has elapsed. If so, it informs S. All the ballots in the list of cast
ballots will be accessible for tallying, as by the time of recording,
the execution is still in the Cast phase, taking into consideration
delay_cast. Observe that S might receive a vote before the Tally
phase. This is not an issue as the Cast phase would be over.

Finally, theTally phase is active for everyCl such that Status(Cl,
®𝑡, Tally) = ⊤. In this phase, the voter𝑉 requests the tally from FSTE
and receives the multi set of the cast ballots. Moreover, S can re-
quest the election outcome and receives it if Status(Cl, ®𝑡, Tally) =
⊤ or Status(Cl, ®𝑡,Cred) = Status(Cl, ®𝑡,Cast) = Status(Cl, ®𝑡, Tally) =
⊥. The latter condition captures cases in which S might be able
to learn the tally earlier from the Tally phase but still when the
Cast phase would be over, meaning that fairness is preserved. In
addition, 𝑉 or S may execute verification by providing FSTE with
some multiset T̂ that replies by 1 or 0 depending on whether T̂
matches the tally multiset or not.

The predicate Status : N× (N)3×{Cred,Cast, Tally} → {⊤,⊥}
is defined as follows. Given the current time Cl ∈ N, the time vector
®𝑡 = (𝑡cast, 𝑡open, delay_cast) ∈ (N)3, and A ∈ {Cred,Cast, Tally}:

Status(Cl, ®𝑡,A) =


⊤, A = Cred ∧ Cl < 𝑡cast

⊤, A = Cast ∧ 𝑡cast ≤ Cl < 𝑡open − delay_cast
⊤, A = Tally ∧ 𝑡open ≤ Cl

⊥, otherwise

FSTE (SA,V, delay_gen, delay_cast, Status).

The functionality initializes as empty the lists of eligible
voters’ credentials 𝐿elig, generated ballots 𝐿gball, cast ballots
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𝐿cast, pending for reception ballots 𝐿pend, a list 𝐿adv of the
(dummy) parties that have submitted anAdvance_Clockmes-
sage for the current round, and a multiset T. Upon receiving
(sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V, it fixes Vcorr as the
set of corrupted voters.

Each time the functionality receives a command message it
executes the delayed ballot generation and casting procedure
as described below:

Delayed ballot generation and casting: Upon receiv-
ing (sid/sid𝐶 ,I, input) from 𝑉 ∈ V \ Vcorr, where
I ∈ {Gen_Cred,Cast,Update,Cast_Check,
Advance_Clock, Read_Clock,Tally}, if V \ Vcorr ⊆ 𝐿adv, it
sends (sid𝐶 ,Advance_Clock) to Gclock to proceed to the
next round. Upon receiving (sid𝐶 ,Advanced_Clock, Fvm)
from Gclock, it reads the time Cl from Gclock and does:

(1) For every tuple (𝑉 , 𝑣, 𝑜, tag,Cl′, 1) in 𝐿gball such that
Cl − Cl′ ≥ delay_gen, if Status(Cl, ®𝑡,Cast) = ⊤ it
adds (𝑉 , 𝑣, 𝑜,Cl, 1) to 𝐿cast and (𝑣,𝑉 ,Cl) to 𝐿pend .

(2) For every triple (𝑣∗,𝑉 ∗,Cl∗) ∈ 𝐿pend such that Cl −
Cl∗ = delay_cast, it sends (sid,Cast_Ballot, 𝑣∗) to
S only if Status(Cl, ®𝑡,Cast) = ⊥. Then, it removes
(𝑣∗,𝑉 ∗,Cl∗) from 𝐿pend.

(3) It sets 𝐿adv as empty.
Then, it executes (sid/sid𝐶 ,I, input) as described below.

■ Upon receiving (sid, Election_Info,Velig,O, 𝑡cast, 𝑡open)
from SA for the first time, if Velig ⊆ V and 𝑡cast <

𝑡open, it forwards the message to S. Upon receiving
(sid, Election_Info_OK,Velig,O, 𝑡cast, 𝑡open) from S, it sets
®𝑡 ← (𝑡cast, 𝑡open, delay_cast) and reg.par := (Velig,O, ®𝑡).
■Upon receiving (sid,Gen_Cred) from 𝑉 ∈ Velig for the first
time, it reads the time Cl from Gclock. If Status(Cl, ®𝑡,Cred) =
⊤, it sends (sid,Gen_Cred,𝑉 ) to S. Upon receiving
(sid,Gen_Cred,𝑉 , ready) from S, if 𝑉 ∉ Vcorr, it adds
(𝑉 , ready, 1) to 𝐿elig. Else, it adds (𝑉 , ready, 0) to 𝐿elig.
■Upon receiving (sid,Cast, 𝑜) from 𝑉 ∈ Velig \ Vcorr for the
first time such that (𝑉 , ready, 1) ∈ 𝐿elig and 𝑜 ∈ O, it reads
the time Cl from Gclock. If Status(Cl, ®𝑡,Cast) = ⊤ it does:

(1) It picks tag
$← TAG and it inserts the tuple(

𝑉 ,Null, 𝑜, tag,Cl, 1
)
→ 𝐿gball.

(2) It sends (sid,Gen_Ballot, tag,Cl, 0 |𝑜 |) to S(Ballot pri-
vacy). Upon receiving the token back from S, it returns
(sid,Casting) to 𝑉 .

■Upon receiving (sid,Update, {(𝑣 𝑗 , tag𝑗 )}
𝑝 (_)
𝑗=1 ) from S for

all 𝑣 𝑗 ≠ Null, if there is a tuple (·, 𝑣 𝑗 , ·, ·, ·, 1) in 𝐿gball or
if there are 𝑗, 𝑗∗ ∈ [1, 𝑝 (_)] such that 𝑣 𝑗 = 𝑣 𝑗∗ it returns
(sid,Update, {(𝑣 𝑗 , tag𝑗 )}

𝑝 (_)
𝑗=1 ,⊥) toS. Else, it updates each tu-

ple (𝑉 ,Null, 𝑜 𝑗 , tag𝑗 ,Cl𝑗 , 1) to (𝑉 , 𝑣 𝑗 , 𝑜 𝑗 , tag𝑗 ,Cl𝑗 , 1) in 𝐿gball.
■ (One-voter-one-vote) Upon receiving (sid,Cast, 𝑣,𝑉 ) from
S for 𝑉 ∈ Vcorr, for the first time, it reads the time Cl
from Gclock. If Status(Cl, ®𝑡,Cast) = ⊤ and there is a tuple

(𝑉 , ready, 0) ∈ 𝐿elig (eligibility), it adds (𝑉 , 𝑣, ·,Cl, 0) to 𝐿cast.
■Upon receiving (sid𝐶 ,Advance_Clock) from a voter 𝑉 ∈
V \ Vcorr, if 𝑃 ∉ 𝐿adv, it adds 𝑃 to 𝐿adv and forwards
(sid𝐶 ,Advance_Clock) to Gclock on behalf of 𝑃 .
■ Upon receiving (sid𝐶 , Read_Clock) from a voter 𝑉 ∈
V \ Vcorr, it reads the time Cl from Gclock and returns
(sid𝐶 , Read_Clock,Cl) to 𝑃 .
■Upon receiving (sid,Tally) from a voter 𝑉 ∈ V \ Vcorr, it
reads time Cl from Gclock. If Status(Cl, ®𝑡, Tally) = ⊤, it does:

(1) If T = ∅, for every tuple (𝑉 ∗, 𝑣, ·,Cl, 0) ∈ 𝐿cast
it sends (sid,Opening,𝑉 ∗, 𝑣) to S. Upon receiving
(sid,Opening,𝑉 ∗, 𝑣, 𝑜) from S, if 𝑜 ∈ O, then it up-
dates the tuple as (𝑉 ∗, 𝑣, 𝑜,Cl, 0) in 𝐿cast. Finally, it sets
the tally multiset as T← {𝑜 ∈ O| (𝑉 ∗, ·, 𝑜, ·, ·) ∈ 𝐿cast}.

(2) It returns
(
sid,Tally,T

)
to 𝑉 .

■ (Fairness)Upon receiving (sid,Tally) from S, it reads
the time Cl from GClock. If Status(Cl, ®𝑡,Cred) =

Status(Cl, ®𝑡,Cast) = Status(Cl, ®𝑡, Tally) = ⊥ or
Status(Cl, ®𝑡, Tally) = ⊤, it returns to S all pairs (𝑣, 𝑜)
such that (𝑉 , 𝑣, 𝑜, tag,Cl∗, 1) ∈ 𝐿gball ∧ (𝑉 , 𝑣, 𝑜,Cl′, 1) ∈ 𝐿cast
for some ballot generation time and casting time Cl∗ and Cl′,
respectively.
■ (Verifiability)Upon receiving (sid,Verify, T̂) from
a voter 𝑉 ∈ V \ Vcorr, it reads Cl from Gclock. If
Status(Cl, ®𝑡, Tally) = ⊤, it does:

(1) If T = ∅, it computes the tally multiset as if it received
a (sid,Tally) command.

(2) If T̂ = T, it returns (sid,Verify, T̂, 1) to 𝑉 . Else, it re-
turns (sid,Verify, T̂, 0) to 𝑉 .

Figure 1: The self-tallying election functionality FSTE.

5 MODULAR DESIGN

Taking advantage of the compositionality of the UC framework,
we break FSTE down into two smaller modules: (i) the eligibility
functionality Felig that handles the credential generation, ballot
authentication of eligible voters and ballot verification, and (ii) the
vote management functionality Fvm that handles the ballot gener-
ation, casting, and opening. In Appendix E.1,E.2,E.3 we formally
present these two functionalities along with a simple protocol that
UC realizes FSTE in the (Felig, Fvm)-hybrid model. The advantage
of following this approach is the ability to change the underlying
cryptographic primitives in future instantiations of E-cclesiawith-
out arguing about the security of a whole protocol that UC realizes
FSTE. For example, to replace a primitive that is related to the vote
management part of the protocol, it suffices to define a smaller pro-
tocol that UC realizes Fvm (instead of FSTE). This approach makes
both the proof and the modeling simpler, as it supports easier fu-
ture updates of the underlying primitives due to the technological
advancements of each era (an advanced hash-function) or design
choices (threshold encryption instead of time-lock encryption).
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In the rest of this section, we provide an overview of the com-
mand interface of Felig and Fvm, as well as the theorem stating the
realization of FSTE in the (Felig, Fvm,Gclock)-hybrid model.

The functionality Felig (SA,V, delay_cast, Status): (cf. Figure 13)
It records the set of corrupted voters Vcorr provided by S.
■Upon receiving (sid, Eligible,Velig,O, 𝑡cast, 𝑡open) from SA, if the
parameters are valid, it requests and receives algorithms GenCred,
AuthBallot, VrfyBallot, UpState, and state 𝑆𝑡gen from S. Then,
it sends the registration parameters (sid, Elig_Par, (Velig,O, ®𝑡 :=
(𝑡cast, 𝑡open, delay_cast), 𝑆𝑡gen)) to all voters and S.
■Upon receiving (sid,Gen_Cred) from 𝑉 ∈ Velig \ Vcorr once dur-
ing the Credential generation phase, it computes a credential
triple (cr, ĉr, aux) ← GenCred(1_, reg.par). It sends (sid,Gen_Cred,
𝑉 , ĉr, sender) to 𝑉 and (sid,Gen_Cred,𝑉 , ĉr) to all other voters in
V \ {𝑉 } and S. The functionality allows S to generate credential
triples on behalf of eligible corrupted voters.
■Upon receiving (sid,Auth_Ballot, 𝑣) from𝑉 ∈ Velig \ Vcorr dur-
ing the Cast phase, it runs ballot authentication by computing
𝜎 ← AuthBallot(𝑣, cr, 𝑆𝑡fin, reg.par, aux), where 𝑆𝑡fin is generated
by the UpState algorithm. It returns (sid, Auth_Ballot, 𝑣 , 𝜎) to
𝑉 . The functionality allows S to authenticate eligible corrupted
voters’ ballots.
■Upon receiving (sid,Ver_Ballot, 𝑣, ®𝜎 = (cr, 𝜎)) from 𝑉 ∈ V, it
runs ballot verification by computing 𝑥 ← VrfyBallot(𝑣, ®𝜎, 𝑆𝑡fin,
reg.par). If cr is recorded and 𝑣 has been honestly authenticated
via ®𝜎 , it sends (sid,Ver_Ballot, 𝑣, ®𝜎, 1) to𝑉 . If 𝑥 = 1 and 𝑣 has not
been authenticated via ®𝜎 , it sends (sid,Ver_Ballot, 𝑣, ®𝜎,⊥) to 𝑉
and halts. If 𝑥 = 1 and there is an honest ballot 𝑣 ′ ≠ 𝑣 authenticated
via ®𝜎 ′ = (cr, 𝜎 ′), it sends (sid,Ver_Ballot, 𝑣, ®𝜎,⊥) to 𝑉 and halts.
Else, it sends (sid,Ver_Ballot, 𝑣, ®𝜎, 𝑥) to 𝑉 .
■Upon receiving

(
sid, Link_Ballots, (𝑣1, (cr1, 𝜎1)), (𝑣2, (cr2, 𝜎2))

)
from 𝑉 ∈ V, it returns

(
sid, Link_Ballots, (𝑣1, (cr1, 𝜎1)), (𝑣2, (cr2,

𝜎2)), 𝑥
)
to 𝑉 , where 𝑥 = 1 if cr1 = cr2 and 𝑣1, 𝑣2 have been authen-

ticated via (cr1, 𝜎1) and (cr2, 𝜎2), respectively, and 𝑥 = 0, otherwise.

The functionality Fvm (SA,V, delay_gen, delay_cast, Status): (cf.
Figure 14) It records the set of corrupted voters Vcorr provided by S.
■Upon receiving (sid, Election_Info,O,Velig, 𝑡cast, 𝑡open) from SA
for the first time, if parameters are valid, it sends the voting param-
eters (sid, Election_Info, (Velig,O, ®𝑡 := (𝑡cast, 𝑡open, delay_cast)))
to SA and S.
■Upon receiving (sid,Gen_Ballot, 𝑜) from 𝑉 ∉ Vcorr for the first
time, if 𝑜 ∈ O, it records the time that 𝑉 submitted the request for
selection 𝑜 associating it with some random tag, and asks from S
to generate a ballot for 0 |𝑜 | , i.e., by disclosing only the length of
𝑜 . It returns (sid,Generating) to 𝑉 . The functionality allows S to
generate ballots on behalf of the corrupted voters for selections of
its choice.
■ Upon receiving (sid,Update, {(𝑣 𝑗 , tag𝑗 )}

𝑝 (_)
𝑗=1 ) from S, it asso-

ciates each ballot 𝑣 𝑗 with the preference 𝑜 𝑗 of 𝑉 that is recorded
under the same tag𝑗 .
■Upon receiving (sid, Retrieve) from 𝑉 ∉ Vcorr, it returns (sid,
Retrieve, (𝑜, 𝑣)) to 𝑉 , if ballot 𝑣 is associated with the selection
𝑜 of 𝑉 that was recorded at least delay_gen time earlier. Else, it
returns (sid, Retrieve,⊥) to 𝑉 .

■Upon receiving (sid,Cast, 𝑣, ®𝜎) from 𝑉 ∈ Velig \ Vcorr during the
Cast phase, if there is a ballot 𝑣 associated with a selection 𝑜 of
𝑉 that was recorded at least delay_gen time earlier, then it marks
(𝑣, ®𝜎) as “pending” to be cast on behalf of 𝑉 . Otherwise, it returns
(sid,Cast, 𝑣, ®𝜎,⊥) to 𝑉 . The functionality allows casting of any
corrupted voters’ ballots during the Cast phase.
■The functionality forwards the requests of all honest parties to
Gclock and monitors the Advance_Clockmessages forwarded dur-
ing each round. If all honest parties have made anAdvance_Clock
request for the current round, it sends an Advance_Clock re-
quest for itself to proceed to the next round. Then, for every 𝑀∗

pending to be cast on behalf of 𝑉 ∗ for delay_cast time, it sends
(sid,Cast_Ballot, 𝑀∗, sender) to𝑉 ∗ and (sid,Cast_Ballot, 𝑀∗)
to all voters in V \ {𝑉 ∗} and S.
■Upon receiving (sid,Open, 𝑣) from any party 𝑃 ∈ V ∪ {S} during
the Tally phase, if 𝑣 is associated with an honestly recorded selec-
tion 𝑜 , it sends (sid,Open, 𝑣, 𝑜) to 𝑃 . Besides, the corrupted voters’
ballots are opened as S instructs.
■Upon receiving (sid, Leakage) fromS during either (i) a “waiting”
period that neither credential generation, casting nor tally happens,
or (ii) during the Tally phase, it provides S with all the honestly
cast ballots and their associated selections.

The protocol Π
Felig,Fvm
STE (SA,V, delay_gen, delay_cast, Status): is

presented in Figure 15. Its purpose is to combine the two interfaces
of Felig and Fvm in order to build a complete hybrid protocol that
realizes FSTE. We prove the following theorem in Appendix E.3.2.

Theorem 5.1. The protocolΠFelig,FvmSTE (SA,V, delay_gen, delay_cast,
Status) described in Figure 15 UC-realizes FSTE (SA,V, delay_gen,
delay_cast, Status) in the (Felig, Fvm,Gclock)-hybrid model.

Subsequently, we provide concrete realizations of Felig and Fvm
which results in E-cclesia, the first instantiation of ΠFelig,FvmSTE .

6 E-CCLESIA AS A UC REALIZATION OF FSTE
In Section 5, we showed how we can realize FSTE by using the
two functionality sub-modules Felig and Fvm. In this section, we
present UC realizations Πelig (cf. Subsection 6.3) and Πvm (cf. Sub-
section 6.4) for the functionalities Felig and Fvm, respectively, in
hybrid models. Given our realizations of UC secure anonymous
broadcast (cf. Subsection 6.1) and accumulator (cf. Subsection 6.2),
and results from the UC literature, we argue that each of the
deployed hybrid functionalities can be realized via a subset of
{FCRS, FRO, FBC,W𝑞,Gclock}. Thus, we conclude that the UC de-
scription of E-cclesia,ΠE-cclesia , UC-realizesFSTE in the (FCRS, FRO, FBC,
W𝑞,Gclock)-hybrid model (cf. Subsection 6.5).

6.1 Realizing UC anonymous broadcast

In this subsection, we provide a formalization of the notion of
anonymous broadcast and a UC realization that is based on mix-
nets [18]. We stress that our approach guarantees a high level
of sender anonymity, thus supporting resistance against timing

attacks [1, 45].
The ideal functionality F ℓ,𝐵,𝑝

an.BC: The functionality F
ℓ,𝐵,𝑝

an.BC is pre-
sented in Figure 2. The parameter ℓ determines the communication
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delay from the moment that a message is transmitted till the mo-
ment it is received by all parties. In addition, F ℓ,𝐵,𝑝

an.BC is parameter-
ized by 𝐵, which is a bound on the number of messages that each
party can broadcast per round. We stress that this bound appears to
be necessary, otherwise the functionality would become unrealistic.
Namely, in any real-world protocol, if the maximum number of
messages that the environment can instruct a sender party to broad-
cast in some round is unknown, then any attempt to create a “cover
traffic” effect via the transmission of (indistinguishable) dummy
messages would fail. Thus, the sender’s broadcast rate would be
revealed to an adversary that observes the entire network (global
adversary) and anonymity, as determined by a functionality that
does not consider a bound 𝐵, could easily be broken. Finally, our
functionality is parameterized by a polynomial 𝑝 (·) that sets an
upper bound on the length of the messages that are allowed to be
broadcast. Like 𝐵, this bound seems to be necessary, otherwise in
any realization attempt, the length of the dummy messages would
not be able to support a cover traffic effect over actual messages of
unknown variable length.

Overall, F ℓ,𝐵,𝑝

an.BC aims to capture the highest possible level of
sender anonymity by fully hiding the sender’s activity apart from
the fact that it has not broadcast more than 𝐵 messages per round,
and that the message length is bounded by 𝑝 (_).

The Anonymous Broadcast functionality F ℓ,𝐵,𝑝

an.BC (P).

The functionality initializes as empty a list 𝐿pool of messages
pending to be broadcast, and a list 𝐿adv of the (dummy) parties
that have submitted an Advance_Clock message for the cur-
rent round. In addition, it sets a flag status as 0 and for every
party 𝑃 ∈ P, it sets a counter count𝑃 also as 0. Let Pcorr ⊆ P
be the set of corrupted parties.

Every time the functionality receives a command message
from a party 𝑃 ∈ P, it executes the procedure Setup or

Broadcast as described below and then executes the command
message according to its description.

Setup or Broadcast: Upon receiving (sid/sid𝐶 ,I, input)
from 𝑃 ∈ P \ Pcorr, where I ∈
{Broadcast,Advance_Clock, Read_Clock}, if
status = 0, it sends (sid, Setup, 𝑃) to S. Upon receiv-
ing (sid, Setup_No, 𝑃) from S, it halts. Else, upon receiving
(sid, Setup_OK, 𝑃) from S, it sets status = 1.

Next, it reads the time Cl from Gclock. If
P \ Pcorr ⊆ 𝐿adv, it sends (sid𝐶 ,Advance_Clock) to
Gclock to proceed to the next round. Upon receiving
(sid𝐶 ,Advanced_Clock, F

ℓ,𝐵,𝑝

an.BC) from Gclock, it does:

(1) It randomly chooses a permutation 𝜋
$←

{1, . . . , |𝐿pool |}, where |𝐿pool | is the number of
elements in 𝐿pool.

(2) It reorders the entries in 𝐿pool w.r.t. 𝜋 , i.e., 𝐿pool ←
𝜋 (𝐿pool).

(3) For every triple (𝑀∗, 𝑃∗,Cl∗) ∈ 𝐿pool such that Cl −
Cl∗ = ℓ +1, it anonymously broadcasts𝑀∗ to 𝑃1, . . . , 𝑃𝑛

andS as follows: it sends (sid, Broadcast, 𝑀∗, sender)
to 𝑃∗ and (sid, Broadcast, 𝑀∗) to all other parties in
P \ {𝑃∗} and S. Then, it removes (𝑀∗, 𝑃∗,Cl∗) from
𝐿pool. For the triples of the form (tag, 𝑃∗,Cl∗) it does the
same except that it first requests from S the broadcast
message𝑀∗ that corresponds to tag.

(4) It sets 𝐿adv as empty and for every 𝑃∗ ∈ P it resets
count𝑃∗ as 0.

Subsequently, it executes (sid/sid𝐶 ,I, input) as described
below.
■ Upon receiving (sid, Broadcast, 𝑀) from a party
𝑃 ∈ P \ Pcorr, if count𝑃 = 𝐵 or |𝑀 | > 𝑝 (_) or 𝑃 ∈ 𝐿adv, it
ignores the message. Otherwise, it reads the time Cl from
Gclock, it adds (𝑀, 𝑃,Cl) to 𝐿pool and increases count𝑃 by 1.

■Upon receiving (sid, Broadcast, tag, 𝑃) from S on behalf
of a party 𝑃 ∈ Pcorr, it reads the time Cl from Gclock and adds
(tag, 𝑃,Cl) to 𝐿pool.
■ Upon receiving (sid𝐶 ,Advance_Clock) from a party
𝑃 ∈ P \ Pcorr, if 𝑃 ∉ 𝐿adv, it adds 𝑃 to 𝐿adv and forwards
(sid𝐶 ,Advance_Clock) to Gclock on behalf of 𝑃 .
■ Upon receiving (sid𝐶 , Read_Clock) from a
party 𝑃 ∈ P \ Pcorr, it reads the time Cl from
Gclock and returns (sid𝐶 , Read_Clock,Cl) to 𝑃 .

Figure 2: The anonymous broadcast functionality F ℓ,𝐵,𝑝

an.BC.

The protocol Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC : Our mix-net-based construction is built
upon a special case of a𝑚 × ℓ stratified mix-net architecture [29];
For 𝑗 ∈ [𝑚], there is a cascade of ℓ mix servers MX𝑗,1 → · · · →
MX𝑗,𝑘 → · · · → MX𝑗,ℓ . The input to the serverMX𝑗,1 is encrypted
via ℓ-level layered encryption. Let MX = {MX𝑗,𝑘 } 𝑗 ∈[𝑚],𝑘∈[ℓ ] be
the set of all mix servers.

The protocol execution is initialized by the first activated party
broadcasting (via functionality FBC) a “setup” message to all mix
servers. In turn, every MX𝑗,𝑘 generates a pair of a secret and a
public key (sk𝑗,𝑘 , pk𝑗,𝑘 ) and broadcasts pk𝑗,𝑘 to all parties.

Subsequently, anonymous broadcast of messages is carried out.
To achieve the high level of sender anonymity required by F ℓ,𝐵,𝑝

an.BC,
our design encompasses the following techniques:

1. Padding: Only messages of length up to 𝑝 (_) will be broad-
cast. To achieve transmission of messages of equal length standard
padding is used. Upon receiving (sid, Broadcast, 𝑀) fromZ, if the
sender party 𝑃 has not already received 𝐵 Broadcast commands
from Z for the current round and if the message 𝑀 has length
|𝑀 | < 𝑝 (_), then 𝑀 is padded (e.g., with leading zeros) so that
|𝑀 | = 𝑝 (_). For notation simplicity, we will still write the padded
message as𝑀 and will clarify when necessary.

2. Equivocation: The sender applies the equivocation technique
of [53] on the padded message 𝑀 that utilizes a random oracle
𝐻 (·) (modeled as FRO in the UC setting) for producing the pair
(𝑟, 𝐻 (𝑟 ) ⊕ 𝑀), where 𝑟 is some randomness. In the security proof,
this step allows the simulator that controls FRO to emulate message
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transmission and produce a consistent view to the adversary, even
if it receives the real broadcast messages from F ℓ,𝐵,𝑝

an.BC with delay ℓ .
3. Share-wise transmission: To be transmitted to the mix-net, the

pair (𝑟, 𝐻 (𝑟 ) ⊕ 𝑀) is first split into𝑚 shares via Shamir’s (𝑡,𝑚)-
threshold secret sharing (TSS) scheme [62], where 𝑡 is the threshold
of shares required for recovering the secret. Each share [(𝑟, 𝐻 (𝑟 ) ⊕
𝑀)] 𝑗 , 𝑗 ∈ [𝑚], intended for the 𝑗-th cascade, is encrypted into ℓ lay-
ers asPKE.Enc

(
pk𝑗,1, . . . , (PKE.Enc(pk𝑗,ℓ , (tag, [(𝑟, 𝐻 (𝑟 )⊕𝑀)] 𝑗 )))

)
,

where tag is a random tag common for all shares of (𝑟, 𝐻 (𝑟 ) ⊕𝑀)].
By utilising (𝑡,𝑚)-TSS, we achieve fault-tolerance (up to a fixed
threshold𝑚− 𝑡 ) against fail-stop failures and totally hide (𝑟, 𝐻 (𝑟 ) ⊕
𝑀) from a coalition of up to 𝑡 − 1 corrupted exit servers.

4. Cover traffic and batch transmission: Each party creates a cover
traffic effect by transmitting as many dummy ciphertexts to each
input (first layer) server, so that the bound 𝐵 is reached. The party
transmits all real and dummy ciphertexts together right before com-
pleting her round, i,e, when it receives a (sid𝐶 ,Advance_Clock)
command fromZ. By applying cover traffic and batch transmission
as above, the protocol provides resistance against timing attacks.

5. Anonymous routing: Each input server of the𝑚 cascades re-
ceives the corresponding encrypted share of the message (𝑟, 𝐻 (𝑟 ) ⊕
𝑀), where all encrypted shares are accompanied by the same ran-
dom tag. In each layer, the servers remove one layer of encryption
and in the beginning of the next round, they randomly permute the
(encrypted) shares they received in the current round. By permut-
ing the shares, the knowledge that the global adversary has on the
activation sequence of the senders during a round (inherent in the
UC framework) is neutralized. Then, MX𝑗,𝑘 forwards the pool of
permuted encrypted shares toMX𝑗,𝑘+1, for 𝑘 = 1, . . . , ℓ − 1. In the
final ℓ-th layer, the exit server of each cascade decrypts and obtains
the shuffled shares of this cascade in plaintext. In the beginning of
the next round and upon randomly permuting the shares, the exit
server broadcasts the shares to all parties. The whole anonymiza-
tion process imposes an aggregate delay ℓ (1 clock tick per layer).
Moreover, the mix servers discard all ciphertexts that they have
received before.This step guarantees protection against replay at-

tacks, where the adversary eventually links an honest message to its
original sender by retransmitting its original encryption a distinct
number of times. Note that the security of the underlying encryp-
tion scheme implies that no message will be honestly encrypted
twice in an identical manner (i.e., using the same randomness) ex-
cept from some negl(_) probability, so the servers can safely discard
repeated ciphertexts.

6. Message recovery: Upon receiving at least 𝑡 broadcast shares,
every recipient can reconstruct the pair (𝑟, 𝐻 (𝑟 ) ⊕ 𝑀) from the
shares that are linked to the same tag. Then, the recipient will
query the random oracle on 𝑟 , obtain 𝐻 (𝑟 ), and finally recover the
message as𝑀 ← 𝐻 (𝑟 ) ⊕ (𝐻 (𝑟 ) ⊕ 𝑀) and remove the pads.

In terms of communication infrastructure, authentication is re-
quired from a sender party to an input server and from a server at
the 𝑘-th layer to the server of the 𝑘 + 1-th layer of the same cascade.
Broadcast is required at initialization, and during execution only
at the final layer where the exit servers send the decrypted shares
to all recipients. In our protocol description, to avoid inserting an
extra hybrid message authentication functionality (such as the one

in [14]) we make use of the authenticated broadcast functionality
FBC of [31] (cf. Figure 8) that is sufficient for all communications.

The protocol Π𝑚,ℓ,𝑡,𝐵,𝑝

an.BC is formally presented in Figure 17 (cf.
Appendix F.1). Its design enables defense against adversaries that
can (i) observe the whole network traffic (global adversary), (ii)
corrupt parties, and (iii) corrupt up to a threshold of mix servers
(specified by𝑚, ℓ, 𝑡 ), in a fail-stop manner, i.e., the corrupted server
follows the protocol semi-honestly, and can additionally abort at
any time. We prove the following theorem in Appendix F.2.

Theorem 6.1. Let 𝑚, ℓ, 𝑡, 𝐵 be non-negative integers such that

𝑚, ℓ, 𝐵 ≥ 1 and 𝑡 ≤ 𝑚. Let 𝑝 (·) be some polynomial. Let ΣPKE be

a public key encryption scheme that is IND-CPA secure. Then, the

protocol Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC (P, FBC, FRO) described in Figure 17 over ΣPKE UC-
realizes F ℓ,𝐵,𝑝

an.BC (P) in the (FBC, FRO,Gclock)-hybrid model against

all adversaries that (i) are global, (ii) can corrupt parties, and (iii) can

corrupt mix servers in a fail-stop manner according to the following

restrictions:

(1) For every 𝑗 ∈ [𝑚], there is at least a 𝑘 𝑗 ∈ [ℓ] such that

MX𝑗,𝑘 𝑗
is honest (i.e., in every cascade, not all mix servers are

corrupted).

(2)
��{ 𝑗 | ∃𝑘 such that MX𝑗,𝑘 is corrupted}

�� ≤ 𝑚 − 𝑡 (i.e, there are
at least 𝑡 cascades with no corrupted mix servers).

(3)
��{ 𝑗 | MX𝑗,ℓ is corrupted}

�� < 𝑡 (i.e., the number of corrupted

exit servers is less than 𝑡 ).

6.2 Realizing a universally composable

accumulator without trusted party

As mentioned in Section 3, we utilize signatures of knowledge so that
the voters prove their eligibility without revealing their identity.
To achieve scalability by eliminating the dependency between the
signature size and the voting population we introduce dynamic
accumulators in our construction. Below, we present our ideal ac-
cumulator functionality Facc that is in the spirit of [6] adjusted to
our scenario. Then, we introduce the protocol Πacc that follows
the command interface of Facc. In addition, the instantiation of the
accumulator scheme in [57] allows the execution of Πacc without
the involvement of a trusted party such as a CRS. The full version
of this section along with the formal description of Πacc and the
proof of UC realization can be found in Appendix G.

The functionality Facc (P):
■Upon receiving (sid, Setup) by any uncorrupted party, the func-
tionality requests the accumulator algorithms Gen, Update, WitUp,
VerStatus from S. Then, Facc, records the party as “ready”, mean-
ing that is allowed to use the functionality for calls in the future
(e.g. insert an element in the accumulator or update a witness) and
generates the accumulator’s parameters by executing Gen.
■Upon receiving (sid,Update, 𝛼, 𝑥), it allows every ready party to
update their local accumulator value 𝛼 by inserting the element 𝑥 .
Specifically, Facc executes the algorithm Update and obtains the
updated accumulated value 𝛼∗, the witness 𝑤𝑥 of the element 𝑥
and the update message upmsg, which can be used for updating
the outdated witnesses of previous elements that are part of the
accumulator. Then, it returns (𝛼∗, 𝑥,𝑤𝑥 , upmsg) to the party.
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■Upon receiving (sid,Wit_Up, 𝛼old, 𝛼new, 𝑥,𝑤old, (upmsgold+1, . . . ,
upmsgnew)) from a ready uncorrupted party, it updates the out-
dated witness𝑤old. More precisely, the functionality executes the
function WitUp with input the old witness of the element 𝑥 , 𝑤𝑥 ,
a series of update messages upmsg that occurred from previous
updates, the old accumulator value 𝛼old when 𝑥 first inserted, and
the most recent one 𝛼new. The result is the updated witness 𝑤𝑥∗

which is returned back to the party.
■Upon receiving (sid,Ver_Status, 𝛼, VerStatus′ , 𝑥,𝑤), the func-
tionality verifies if the given element 𝑥 is part of the accumulator 𝛼
by executing VerStatus and using the provided witness𝑤 . In case
the verification succeeds but 𝑥 is not part of 𝛼 then a forgery has
been occurred and Facc outputs the special symbol ⊥.

The functionality Facc is presented formally in Figure 18. The
protocolΠacc is presented in Figure 19 and builds upon an accumula-
tor scheme Σacc = (Gen, Update, WitUp, VerStatus). We prove that
the protocol Πacc, when instantiated by an accumulator scheme
that satisfies the security properties in [57], UC realizes Facc as
stated in the next theorem (cf. Appendix G.4).

Theorem 6.2. The protocol Πacc (P, F Gen
CRS, Σacc) decribed in Figure

Figure 19 UC-realizes Facc (P) in the F Gen
CRS-hybrid model if and only

if Σacc = (Gen, Update, WitUp, VerStatus) satisfies Correctness (cf.
Definition G.1) and Soundness (cf. Definition G.2).

Moreover, if Σacc is instantiated with the scheme in [57], then

Πacc (P, F Gen
CRS, Σacc) UC-realizes Facc (P) without trusted party.

6.3 Realizing Felig via accumulators, SoK, and

non-interactive commitments

We present the protocol Πelig that UC realizes Felig. In Πelig, the SA
sets up: (i) the accumulator functionality Facc used for accumulating
the commitments of all voters’ credentials; (ii) the non-interactive
commitment functionality FNIC responsible for generating the vot-
ers’ credentials; (iii) the signature of knowledge functionality FSOK
used by each eligible voter to authenticate her ballot.

Πelig (V, SA, Facc, FNIC, FSOK, FBC, delay_cast, Status).

All parties have hard-coded the predicates Status and the
value delay_cast. Each voter 𝑉 maintains the list that con-
tains information related to the accumulation of elements
𝐿𝑉info and the list of authenticated committed credentials 𝐿𝑉cred
both initially as empty. If at any point a hybrid functionality
returns an error or ⊥, the party forwards the message toZ.
■Upon receiving (sid, Eligible,Velig,O, 𝑡cast, 𝑡open) from Z,
if Velig ⊂ V, SA does:

(1) It sends (sid, Setup) to Facc.
(2) Upon receiving (sid, Setup, shared_params)

from Facc, it stores shared_params and sends
(sid,Com_Setup_Ini) to FNIC. Upon receiv-
ing (sid,Com_Setup_End, OK) from FNIC, SA
sends (sid, Setup) to FSoK. Upon receiving
(sid,Algorithms, Sign, Verify) from FSoK, it
sets 𝑆𝑡gen = 𝛼0 (extracted from shared_params)

and sets ®𝑡 ← (𝑡cast, 𝑡open, delay_cast), and
reg.par← (Velig,O, ®𝑡, 𝑆𝑡gen).

(3) It sends (sidall, Broadcast, reg.par) to FBC
for sidall = (sid, SA ∪ V). Upon receiving
(sidall, Broadcast, reg.par) from FBC, it returns
(sid, EligPar, reg.par) toZ.

■Upon receiving (sidall, Broadcast, (SA, reg.par)) from FBC,
𝑉 stores reg.par and sets her status to ‘Cred’.
■Upon receiving (sid,Gen_Cred) fromZ for the first time,𝑉
reads Cl from Gclock. If Status(Cl, ®𝑡,Cred) = ⊤, then 𝑉 does:

(1) She picks a random cr from the message space M
and sends (sid,Com_Commit_Ini, cr) to FNIC. Upon
receiving (sid,Com_Commit_End, ĉr, aux) from FNIC,
if ĉr ∉ 𝐷 , she repeats this step until it does. She stores
(cr, ĉr, aux).

(2) She sends (sidall, Broadcast, ĉr) to FBC. Upon receiv-
ing (sidall, Broadcast, (𝑉 , ĉr)) from FBC, she appends
the pair (𝑉 , ĉr) to 𝐿cred.

■Upon receiving (sidall, Broadcast, (𝑉 ∗, ˆcr∗)) from FBC, 𝑉
reads Cl from Gclock. If Status(Cl, ®𝑡,Cred) = ⊤ and 𝑉 ∗ ∈
Velig, then 𝑉 appends (𝑉 ∗, ˆcr∗) to 𝐿cred.
■Upon receiving (sid,Auth_Ballot, 𝑣) from Z, 𝑉 reads Cl
from Gclock. If Status(Cl, ®𝑡,Cast) = ⊤, then 𝑉 does:

(1) For all pairs (𝑉1, ĉr1), . . . , (𝑉 , ĉr =

ĉr𝑘 ), . . . , (𝑉𝑡max , ĉr𝑡max ) (in that order), 𝑉 sends
(sid,Update, 𝛼𝑡−1, ĉr𝑡 ) to Facc. Upon receiving
(sid,Update, 𝛼𝑡−1, ĉr𝑡 , 𝛼𝑡 ,𝑤 ĉr

𝑡 , upmsg𝑡 ) from Facc, she
appends the tuple (𝑉𝑡 , 𝛼𝑡 , ĉr𝑡 ,𝑤 ĉr

𝑡 , upmsg𝑡 ) to 𝐿info.
(2) She sends (sid,Wit_Up, 𝛼𝑘 , 𝛼𝑡max , ĉr𝑘 ,𝑤

ĉr𝑘
𝑘

, (upmsg𝑘+1, · · · , upmsg𝑡max
)) to Facc where 𝑡max

the last element in the list 𝐿info.
(3) Upon receiving (sid,Wit_Up, 𝛼𝑘 , 𝛼𝑡max , ĉr𝑘 ,𝑤

ĉr𝑘
𝑘

,

(upmsg𝑘+1, · · · , upmsg𝑡max
),𝑤 ĉr𝑘

𝛼𝑡max
) from

Facc, 𝑉 sets 𝑆𝑡𝑓 𝑖𝑛 = 𝛼𝑡max and sends
(sid, Sign, 𝑣, (cr, 𝛼𝑡max ), (ĉr𝑘 ,𝑤

ĉr𝑘
𝛼𝑡max

, aux)) to FSOK.
(4) Upon receiving (sid, Sign, 𝑣, (cr, 𝛼𝑡max ), (ĉr𝑘 ,𝑤

ĉr𝑘
𝛼𝑡max

, aux),
𝜎) from FSOK, 𝑉 returns (sid,Auth_Ballot, 𝑣, 𝜎)
toZ.

■Upon receiving (sid,Ver_Ballot, 𝑣, ®𝜎 = (cr, 𝜎)) fromZ, 𝑉
sends (sid,Verify, 𝑣, (cr, 𝑆𝑡fin), 𝜎) to FSOK and returns to Z
whatever it receives.
■ Upon receiving (sid, Link_Ballots, (𝑣1, ®𝜎1 =

(cr1, 𝜎1)), (𝑣2, ®𝜎2 = (cr2, 𝜎2))) fromZ, then 𝑉 does:
(1) She sends (sid,Verify, 𝑣, cr𝑗 , 𝜎 𝑗 ) for both 𝑗 = 1, 2

to FSOK. If for both 𝑗 = 1, 2 FSOK returns
(sid,Verify, 𝑣, cr𝑗 , 𝜎 𝑗 , 1), she checks if cr1 = cr2
and sets 𝑏 = 1. If for both 𝑗 FSOK returns
(sid,Verify, 𝑣, cr𝑗 , 𝜎 𝑗 , 1) and cr1 ≠ cr2, she sets 𝑏 = 0.

(2) She returns (sid, Link_Ballots, (𝑣1, ®𝜎1), (𝑣2 , ®𝜎2), 𝑏) to
Z.
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Figure 3: The eligibility protocol Πelig.

We provide a proof of the following theorem in Appendix H.

Theorem 6.3. The protocol Πelig (V, SA, Facc, FNIC, FSOK, FBC,
delay_cast, Status) described in Figure 3 UC-realizes Felig (V, SA,
delay_cast, Status) in the (Facc, FNIC, FSOK, FBC,Gclock)-hybrid
model.

6.4 Realizing Fvm via time-lock encryption and

anonymous broadcast

In this Subsection, we construct a real-world protocol Πvm that
UC-realizes the vote management functionality Fvm via the time-
lock encryption functionality F leak,delay_gen

TLE as introduced and UC-
realized in the (Gclock, FBC, FRO)-hybrid model in [3] for the case
where the leakage function is defined as leak(Cl) = Cl + 1. We pro-
vide a proof that Πvm UC-realizes Fvm in the {F leak,delay_gen

TLE , FBC,
F ℓ,1,𝑝
an.BC,Gclock}-hybrid model, where ℓ = delay_cast − 1 and 𝑝 (_)

is the length of a pair of a ballot 𝑣 and authentication data ®𝜎 .

Πvm (V, SA, F leak,delay_gen
TLE , FBC, F

ℓ,1,𝑝
an.BC, Status).

■ Upon receiving (sid, Election_Info,Velig, 𝑡cast, 𝑡open) for
the first time from Z, if Velig ⊆ V and 𝑡cast < 𝑡open, SA sets
delay_cast ← ℓ + 1, ®𝑡 ← (𝑡cast, 𝑡open, delay_cast) and sends
(sidall, Broadcast, vote.par = (Velig,O, ®𝑡)) to FBC, where
sidall = (sid, SA ∪ V).
■ Upon receiving (sidall, Broadcast, (SA, vote.par)) from
FBC, 𝑉 stores (Velig,O, ®𝑡).
■Upon receiving (sid,Gen_Ballot, 𝑜) fromZ, 𝑉 does:

(1) If this is the first time receiving this command,
𝑜 ∈ O, and 𝑉 ∈ Velig, 𝑉 sends (sid, Enc, 𝑜, 𝑡open)
to F leak,delay_gen

TLE . Upon receiving (sid, Encrypting)
from F leak,delay_gen

TLE , 𝑉 sends (sid,Generating) toZ.
(2) Else, 𝑉 returns toZ (sid,Gen_Ballot, 𝑜,⊥).

■ Upon receiving (sid, Retrieve) from Z, 𝑉 sends
(sid, Retrieve) to F leak,delay_gen

TLE . Upon receiving
(sid, Retrieve, (𝑜, 𝑣, 𝑡open)) from F leak,delay_gen

TLE , she records
the tuple (𝑉 , 𝑣, 𝑜, 1) and sends (sid, Retrieve, (𝑜, 𝑣)) toZ.
■Upon receiving (sid,Cast, 𝑣, ®𝜎) fromZ,𝑉 reads the time Cl
from Gclock. If Status(leak(Cl), ®𝑡,Cast) = ⊤, 𝑉 does:

(1) She sends (sid, Retrieve) to F leak,delay_gen
TLE .

Upon receiving (sid, Retrieve, (𝑜 ′, 𝑣 ′, 𝑡open)) from
F leak,delay_gen
TLE she records the tuple (𝑉 , 𝑣 ′, 𝑜 ′, 1).

(2) If there is a tuple of the form (𝑉 , 𝑣, ·, 1) stored and it
is the first time receiving this command-message, 𝑉
sends (sid, Broadcast, (𝑣, ®𝜎)) to F ℓ,1,𝑝

an.BC.
(3) Else, 𝑉 returns (sid,Cast, 𝑣, ®𝜎,⊥) toZ.

■ Upon receiving (sid, Broadcast, (𝑣, ®𝜎)) from F ℓ,1,𝑝
an.BC, 𝑉

∗

stores the tuple (𝑣, ®𝜎) to 𝐿𝑉 ∗cast.

■Upon receiving (sid,Open, 𝑣∗) from Z, if there is a tuple
(𝑣∗, ®𝜎∗) ∈ 𝐿𝑉cast,𝑉 sends (sid,Dec, 𝑣∗, 𝑡open) to F leak,delay_gen

TLE .
(1) Upon receiving (sid,Dec, 𝑣∗, 𝑡open, 𝑜∗) from
F leak,delay_gen
TLE , 𝑉 returns the message
(sid,Open, 𝑣∗, 𝑜∗) toZ.

(2) Upon receiving (sid,Dec, 𝑣∗, 𝑡open,⊥) from
F leak,delay_gen
TLE , 𝑉 returns the message
(sid,Open, 𝑣∗,⊥) toZ.

Figure 4: The vote management protocol Πvm.

We provide a proof of the following theorem in Appendix I.

Theorem 6.4. The protocolΠvm (V, SA, F leak,delay_gen
TLE , FBC, F

ℓ,1,𝑝
an.BC,

Status) described in Figure 4 UC-realizes Fvm (V, SA, delay_gen,
delay_cast, Status) in the (F leak,delay_gen

TLE , FBC, F
𝑙,1,𝑝
an.BC,Gclock)-hybrid

model, where leak(Cl) = Cl + 1, delay_cast = 𝑙 + 1, and 𝑝 (_) is the
length of a pair of a ballot 𝑣 and authentication data ®𝜎 .

6.5 A UC realization of FSTE
In this subsection, we conclude our formal reasoning about the UC
realization of FSTE. We make the following two observations:

(1) Felig (V, SA, delay_cast, Status) can be realized in the (FCRS,
FBC,Gclock)-hybrid model. This is a corollary of Theorem 6.3
and the facts that (i) Facc can be realized in the standard
model (cf. Theorem 6.2), (ii) FNIC can be realized in the FCRS-
hybrid model (cf. [10] and Theorem C.4), and (iii) FSOK can
be realized in the FCRS-hybrid model (cf. [17] and Appen-
dix C.2). Let Π̃elig (V, SA, FCRS, FBC, delay_cast, Status) be
the UC realization of Felig that derives from Πelig by replac-
ing Facc, FNIC, FSOK with their realizations.

(2) Fvm (V, SA, delay_gen, delay_cast, Status) can be realized in
the (W𝑞 (F ∗RO), FRO, FBC,Gclock)-hybridmodel. This is a corol-
lary of Theorem 6.4 and the facts that (i) FTLE can be realized
in the (W𝑞 (F ∗RO), FRO, FBC,Gclock)-hybrid model (cf. [3]),
and (ii) Fan.BC can be realized in the (FRO, FBC,Gclock)-
hybridmodel (cf. Theorem 6.1). Let Π̃vm (V, SA,W𝑞 (F ∗RO), FRO,
FBC, delay_gen, delay_cast, Status) be the UC realization
of Fvm that derives from Πvm by replacing FTLE, Fan.BC with
their realizations.

By the above two observations and Theorem 5.1 we get the
following concluding theorem.

Theorem 6.5. Let ΠE-cclesia be the protocol that derives from

Π
Felig,Fvm
STE (SA,V, delay_gen, delay_cast, Status) by replacing (i)Felig

with Π̃elig (V, SA, FCRS, FBC, delay_cast, Status) and (ii) Fvm with

Π̃vm (V, SA,W𝑞 (F ∗RO), FRO, FBC, delay_gen, delay_cast, Status).
ΠE-cclesia UC-realizes FSTE (V, SA, delay_gen, delay_cast, Status)
in the (W𝑞 (F ∗RO), FRO, FCRS, FBC,Gclock)-hybrid model.

7 PERFORMANCE CONSIDERATIONS

In this section, we turn to the question of feasibility and scalability
of E-cclesia and present our preliminary results in this direction.
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We focus here on the overheads incurred as a direct consequence of
decentralisation, i.e. the broadcast channels and the tallying of the
election.3 Of course, requiring that each voter computes the tally
themselves amounts to requiring that each voter breaks the com-
putational puzzles underlying each ballot. But the computational
cost on the voters’ end associated with this might not be realistic
for all voters. We suggest the deployment of a computationally
powerful (not trusted) server, that will perform and announce the
computationally expensive operation of TLE decrypting each ballot.
This alleviates the need for intensive computations from resource-
constrained voting clients. Lighter clients will not compute the
tally themselves, instead they will verify the announced puzzle
solutions. And anyone can now benefit from this verifiability so
that they don’t need to re-break puzzles that others have already
broken. Furthermore, as a pragmatic decentralised solution for the
implementation of the broadcast channels we suggest the use of a
distributed ledger, i.e. messages broadcast to all voters in the speci-
fication of E-cclesia will be posted on a public distributed ledger
such as Ethereum or Tezos.

As described in Sections 3 and 6, to vote, each voter needs to
perform the following computations: (a) generate a credential and
its commitment, (b) accumulate all credential commitments in a
Merkle tree, (c) encrypt her ballot with a TLE scheme, and (d) sign
the encrypted ballot with a SoK of the corresponding accumulated
credential. To compute the tally, for each ballot each voter needs to
(e) verify the SoK, and (f) decrypt the ballot.

We present our implementation and benchmarks of concrete in-
stantiations of the key cryptographic operations E-cclesia voters
need to perform, namely time-lock encryption and signatures of
knowledge of accumulated credentials. By utilizing a consumer lap-
top computer for benchmarking (2.5 GHz Intel 7300HQ processor,
16 GB 2133 MHz RAM), we provide evidence of the practicality of
self-tallying in small to mid-sized elections (up to 100K voters).
Ballot time-lock encryption. We instantiate the TLE scheme by
Pietrzak’s VDF [56] combined with AES encryption according to
Rivest et al.’s scheme [58] (formally analyzed in [59] and [41]). Our
instantiation allows fast verification of a solution to the time-lock
puzzle. This way, voters are able to open ballots cooperatively, and
off-load the computationally heavy task of solving the underlying
TLE puzzles to more powerful devices. This approach also allows ef-
ficient puzzle generation using the RSA trapdoor. Pietrzak presents
a non-interactive proof for solutions to such puzzles. The size of
proofs and verification time is logarithmic with the difficulty pa-
rameter 𝑡 , which is proportional to the desired decryption time.
Our instantiation of the TLE primitive can be proven to UC realise
FTLE in the generic group model and the RO modelal by adapting
the proof of UC security of Astrolabous in [3], similarly to the UC
treatment of Rivest et al.’s scheme proposed in [8].

We benchmark TLE solution verification according to two ap-
proaches (i) using Pietrzak’s construction; (ii) when voters volun-
tarily reveal the trapdoor (factorization of modulus). We choose
𝑡 = 242 as a representative difficulty based on the findings of the
VDF Alliance FPGA Contest [63]. The results are tabulated in Ta-
ble 1. Since puzzle solutions can be verified independently, the total

3Other low level primitives mobilised in E-cclesia are considered standard in the
e-voting literature.

Ballots Pietrzak Trapdoor SoK
10 0.277s 0.321s 0.0239s
100 2.44s 2.33s 0.358s
1000 25.3s 23.1s 2.94s
10000 4m 3m47s 23.1s
100000 40m9s 37m55s 3m53s

Table 1: TLE solution verification and SoK verification time

(total)

Voters Tree height Tree hashing (s) Signing (s)
10 4 0.000275 0.0858
100 7 0.00166 0.126
1000 10 0.0135 0.168
10000 14 0.139 0.351
100000 17 1.36 1.61

Table 2: SoK signing time (for each voter)

verification time scales linearly with the number of ballots, and can
be parallelized for improved performance.
SoK of accumulated credential. For SoK, we use the gnark [9]
Go library which implements Groth’s NIZK proof system [35], due
to the relative maturity, easy-of-use, and performance of the li-
brary. We expect that other schemes and implementations will
have comparable performance4, hence our benchmarks support the
feasibility of deploying SoKs in our STE design. Using the library,
we develop a circuit which verifies the knowledge of an accumu-
lated credential, using the Merkle branch and the opening of the
credential commitment as witness.

We benchmark SoK verification time with respect to the number
of ballots, and tabulate the results in Table 1. Similarly to TLE puzzle
solution verification, this scales linearly with the number of ballots.

We also benchmark signing time, which is affected by the height
of the Merkle tree used for credential commitment accumulation.
Additionally, we benchmark the Merkle root computation time,
which is needed as input for the signing and verification procedures,
and scales linearly with the number of accumulated elements. We
tabulate the results in Table 2.
Concluding remarks. Given that the SoK signing process domi-
nates the ballot creation time, we observe that the computational
cost for producing an authenticated ballot is very low. Regarding
the overhead for performing tally, we find that the total TLE and
SoK verification time is low for small-sized elections and reasonable
for mid-sized ones (∼100K voters).
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A UNIVERSAL COMPOSABLE FORMALISM

The Universal Composability (UC) paradigm introduced by Canetti
in [13], which is the state-of-the-art cryptographic model for ar-
guing about the security of protocols when run under concurrent
sessions. In the UC framework, the parties engage in a protocol
session (labeled by a unique session ID, sid) modeled as interactive
Turing Machines (ITMs) that communicate in the presence of an
adversary ITM A that may control some of the parties. The proto-
col execution is scheduled by an environment ITMZ that provides
parties with inputs and may interact arbitrarily with A. The intu-
ition here is that (i)Z captures the external “observer” that aims
to break security by interacting with the protocol interface during
session sid, while (ii)A plays the role of the “insider” that helpsZ
via any possible information it can obtain through engaging in the
session in the back-end of the current execution.

The UC security of a protocol Π follows the real-world/ideal-

world indistinguishability approach. Namely, security is captured
via a special ideal protocol that has the same interface as Π thatZ
interacts with, but now the parties are “dummy”, in the sense that
they only forward their inputs provided byZ to an ideal function-

ality F . The functionality F is in the center of the back-end (i.e.,
the ideal protocol has a star topology) and does not interact with
Z directly. The ideal functionality F formalizes a trusted party
carrying out the task that Π intends to realize (e.g., secure commu-
nication, key agreement, authentication, etc.). The functionality F
interacts with the adversary present in the ideal protocol, usually
called a simulator S, and this interaction results in a “minimum

leakage of information” that determines the ideal level of security
that any protocol realizing the said task should satisfy (not only Π).
For instance, if F formalizes an ideal secure channel, then the mini-
mum leakage could be the ciphertext length. In case thatZ gives an
input to a corrupted party 𝑃 in the ideal world, the functionality F
passes that message to S and returns back to 𝑃 whatever it receives
from S. In both executions, if a party has the token and halts, then
by convention the token is passed to the environment. We say that
the real-world protocol is UC-secure if no environmentZ can dis-
tinguish its execution from the one of the ideal protocol managed
by F . More formally, let EXECΠ

Z,A denote an execution of a real-
world protocol Π in the presence of the adversary A scheduled by
an environmentZ, and EXECFZ,S denote an execution of the ideal
protocol managed by F in the presence of a simulator S, again
scheduled byZ. The UC security of Π is defined as follows.

Definition A.1 (UC realization [13]). The protocol Π is said to UC-
realize the ideal functionality F if for any PPT adversary A, there
exists a PPT simulator S such that for any PPT environmentZ, the
random variables EXECΠ

Z,A and EXECFZ,S are computationally
indistinguishable. More formally:�� Pr[EXECFZ,S (_) = 1] − Pr[EXECΠ

Z,A (_) = 1]
�� = negl(_)

Composition and modularity. Perhaps the most prominent fea-
ture of the UC paradigm is the preservation of security of a protocol
that runs concurrently with other protocol instances, or as a sub-
routine of another (often more complex) execution. In particular,
assume a protocol Π that UC-realizes an ideal functionality F ac-
cording to Definition A.1, and is used as a subroutine of a “larger”
protocol Π̃. Then, UC guarantees that if we replace any instance of
Π with F , we obtain a “hybrid” protocol, denoted by Π̃Π→F , that
enjoys the same security as Π̃. Namely, if Π̃ UC-realizes some ideal
functionality F̃ , then so does Π̃Π→F .

The power of composition facilitates the design and analysis of
complex cryptographic schemes with a high-degree of modularity.
Namely, the scheme’s formal description can be over the composi-
tion of ideal modules that are concurrently executed as subroutines.
When a protocol Π using the functionalities F1, . . . , F𝑘 UC-realizes
a functionality F , we say that it does so in the {F1, . . . , F𝑘 }-hybrid
model and we write ΠF1,...,F𝑘 to clearly denote the hybrid func-
tionalities. For instance, an e-voting system Πvote can be described
using the ideal functionalities Fsc, Fauth and FBB that formalize the
notions of a secure channel, an authenticated channel, and a Bul-
letin Board, respectively. In this case, we say that Πvote is UC-secure
in the {Fsc, Fauth, FBB}-hybrid model and we write ΠFsc,Fauth,FBBvote to
clearly denote the hybrid functionalities. Furthermore, composition
allows us to extend secure modular design into multiple (poly(_)
many) layers, since a protocol that uses a hybrid functionality as a
subroutine may itself be the subroutine of another protocol of an
“upper layer” until we reach the level of the root ideal protocol (in
our example, an ideal e-voting functionality Fvote).

B COMMON FUNCTIONALITIES

We formally present the cryptographic building blocks listed in
Subsection 3.1. We stress than in the UC framework, hybrid func-
tionalities may capture more than the abstraction of a UC-secure
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real-life protocol. Indeed, they can also capture theoretical assump-
tion, as a trusted source of randomness, or supposition about the
network structure, as First In First Out channels. Notice that those
specific functionalities may be global, meaning that they may act
as shared states across multiple instances and be accessed by func-
tionalities that do not belong to the current session.
The global clock functionality. This global clock (cf. [5]) can be
read at any moment by any involved entity. For each session, the
clock advances only when all the involved parties and functionali-
ties in the session make an advance request.

The Global Clock functionality Gclock (P, F).

The functionality manages the set P of registered identities, i.e.,
parties 𝑃 = (pid, sid) and the set F of registered functionalities
(with their session identifier) (F , sid). For every sid, let Psid =

{(·, sid) ∈ P} ∩ {𝑃 ∈ P | 𝑃 is honest} and Fsid = {(·, sid) ∈ F}.
For each session sid, the functionality initializes the clock

variable Clsid ← 0 and the set of advanced entities per round
as 𝐿sid.adv ← ∅.
■Upon receiving (sid𝐶 ,Advance_Clock) from 𝑃 ∈ Psid, if
𝑃 ∉ 𝐿sid.adv, then it adds 𝑃 to 𝐿sid.adv. If 𝐿sid.adv = Psid ∪ Fsid,
then it updates Clsid ← Clsid + 1, resets 𝐿sid.adv ← ∅ and
forwards (sid𝐶 ,Advanced_Clock, 𝑃) to A.
■Upon receiving (sid𝐶 ,Advance_Clock) from F in a ses-
sion sid such that (F , sid) ∈ F, if (F , sid) ∉ 𝐿adv, then
it adds (F , sid) to 𝐿sid.adv. If 𝐿sid.adv = Psid ∪ Fsid, then it
updates Clsid ← Clsid + 1, resets 𝐿sid.adv ← ∅ and sends
(sid𝐶 ,Advanced_Clock, F ) to this instance of F .
■Upon receiving (sid𝐶 , Read_Clock) from any participant
(including the environment on behalf of a party, the adver-
sary, or any ideal (shared or local) functionality), it sends
(sid𝐶 , Read_Clock,Clsid) to this participant, where sid is the
sid of the calling instance.

Figure 5: The global clock functionality Gclock (P, F) in-
teracting with the parties of the set P, the functionalities
of the set F, the environmentZ and the adversary A.

The random oracle functionality. The random oracle functional-
ity (cf. [53]) can be seen as a trusted source of random input. Given
a query, she returns a random value. She also updates a local vari-
able 𝐿H in order to return the same value to similar queries. This
functionality can be seen as the “idealisation” of a hash function.

The Random Oracle functionality FRO (𝐴, 𝐵).

The functionality initializes a list 𝐿H ← ∅.
■Upon receiving (sid,Query, 𝑥) from any party 𝑃 , if 𝑥 ∈ 𝐴,
then:

(1) If there exists a pair (𝑥, ℎ) ∈ 𝐿H , it returns
(sid, Random_Oracle, 𝑥, ℎ) to 𝑃 .

(2) Else, it picks ℎ ∈ 𝐵 uniformly at random, and it in-
serts the pair (𝑥, ℎ) to the list 𝐿H . Then, it returns
(sid, Random_Oracle, 𝑥, ℎ) to 𝑃 .

Figure 6: The random oracle functionality FRO with re-

spect to a domain 𝐴 and a range 𝐵.

The common reference string functionality. This functionality
(cf. [13]) draws a single random string 𝑟 over an uniform distribution
of strings, and then she delivers it upon request.

Note that the functionality waits for the simulator’s permission
before sending back 𝑟 to the party, and leak 𝑃𝑖 ’s identity to S. This
is often called public delayed output in the literature. The intuition is
the following: a concrete instantiation of a CRS might be a string on
a website. As the string is chosen by the website maintainer, it can
be seen by other parties as a random string. Moreover, accessing
the website may take some time because of the network, and may
leak your IP address. Both time and leakage are captured by the
public delayed output.

The Common Reference String functionality F𝐷
CRS.

The functionality initializes a waiting list 𝐿wait ← ∅.
■ Upon receiving (sid,CRS) from a party 𝑃 , if no value 𝑟

is recorded, it samples 𝑟 in 𝐷 , adds 𝑃 to 𝐿wait and sends
(𝑠𝑖𝑑,Allow, 𝑃) to S.
■Upon receiving (sid,Allowed, 𝑃) from S. If 𝑃 ∈ 𝐿wait, it
sends (sid,CRS, 𝑟 ) to 𝑃 and S and removes 𝑃 from 𝐿wait.

Figure 7: The CRS functionality FCRS interacting with

the simulator S, parameterized by distribution 𝐷 .

The broadcast functionality.We use the (authenticated) broad-
cast functionality FBC in [31]. The realization of FBC in [31] utilizes
the certification functionality in [14], which in turn, can be realized
by deploying a certification authority and digital signatures. In our
setting, the role of the certification authority can be played by the
setup authority (cf. Subsection 3.2) that is active prior to the voting
period.

The Broadcast functionality FBC (P).

■Upon receiving (sid, Broadcast, 𝑀) from 𝑃𝑖 ∈ P, it sends
and (sid, Broadcast, 𝑃𝑖 , 𝑀) to all parties 𝑃1, . . . , 𝑃𝑛 and S.

Figure 8: The broadcast functionality FBC interacting

with the parties in P = {𝑃1, . . . , 𝑃𝑛} and the simulator S.

The non-interactive commitment functionality.We provide
the non-interactive commitment (NIC) functionality FNIC, as intro-
duced in [10]. As shown in [10], FNIC can be realized by using a
standard commitment scheme that is binding and has a trapdoor,
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such as the Pedersen NIC scheme [55]. Namely, a party that (i)
commits to a message cm cannot open the commitment to different
valid message cm′, and (ii) there is a trapdoor information tk that
allows the creation of commitments that can be opened to any
message (this implies that the commitment scheme is hiding, i.e.,
the commitment does not reveal any information about the original
message).

The non-interactive commitment functionality FNIC.

The functionality is parameterized by system parameters sp.
The following COM.TrapCom,COM.TrapOpen and COM.Verify
are ppt algorithms.
■ Upon receiving (sid,Com_Setup_Ini) from a party 𝑃𝑖 , it
does:

(1) If (sid, cparcom, COM.TrapCom, COM.TrapOpen,
COM.Verify, ctdcom) is already stored, it in-
cludes 𝑃𝑖 in the set P, and sends a delayed output
(sid,Com_Setup_End,OK) to 𝑃𝑖 .

(2) Otherwise, it proceeds to generate a random ssid, stores
(ssid, 𝑃𝑖 ) and sends (sid,Com_Setup_Req, ssid) to S.

■ Upon receiving (sid,Com_Setup_Alg, ssid,𝑚) from S, it
does:

(1) If no pair (ssid, 𝑃𝑖 ) for some 𝑃𝑖 is stored, it aborts.
(2) It deletes record (ssid, 𝑃𝑖 ).
(3) If (sid, cparcom, COM.TrapCom, COM.TrapOpen,

COM.Verify, ctdcom) is already stored, it includes 𝑃𝑖
in the set P and sends (sid,Com_Setup_End,OK) to
𝑃𝑖 .

(4) Otherwise, it proceeds as follows:
(a) It parses𝑚 as (cparcom, COM.TrapCom, COM.TrapOpen,

COM.Verify, ctdcom).
(b) It stores (sid, cparcom, COM.TrapCom,

COM.TrapOpen, COM.Verify, ctdcom) and ini-
tializes both an empty table Tblcom and an empty
set P.

(c) It includes 𝑃𝑖 in the set P and sends
(sid,Com_Setup_End,OK) to 𝑃𝑖 .

■Upon receiving (sid,Com_Validate_Ini, ccom) from a party
𝑃𝑖 , it does:

(1) If 𝑃𝑖 ∉ P, it aborts.
(2) It parses ccom as (ccom′, cparcom′, COM.Verify′).
(3) It sets 𝑣 ← 1, if cparcom′ = cparcom and

COM.Verify′ = COM.Verify. Otherwise, it sets 𝑣 ← 0.
(4) It sends (sid,Com_Validate_End, 𝑣) to 𝑃𝑖 .

■Upon receiving (sid,Com_Commit_Ini, cm) from any honest
party 𝑃𝑖 , it does:

(1) If 𝑃𝑖 ∉ P or if cm ∉M, whereM is defined in cparcom,
it aborts.

(2) It computes (ccom, cinfo) ←
COM.TrapCom(sid, cparcom, ctdcom).

(3) If there is an entry [ccom, cm′, copen′, 1] in Tblcom
such that cm ≠ cm′, it aborts.

(4) It computes copen← COM.TrapOpen(sid, cm, cinfo).

(5) If COM.Verify(sid, cparcom, ccom, cm, copen) ≠ 1, it
aborts.

(6) It appends [ccom, cm, copen, 1] to Tblcom.
(7) It sets ccom← (ccom, cparcom,COM.Verify).
(8) It sends (sid,Com_Commit_End, ccom, copen) to 𝑃𝑖 .

■ Upon receiving (sid,Com_Verify_Ini, ccom, cm, copen)
from any honest party 𝑃𝑖 , it does:

(1) If 𝑃𝑖 ∉ P or if cm ∉M or if copen ∉ R, whereM and
R are defined in cparcom, it aborts.

(2) It parses ccom as (ccom′, cparcom′, COM.Verify′).
(3) If cparcom′ ≠ cparcom or COM.Verify′ ≠

COM.Verify, it aborts.
(4) If there is an entry [ccom′, cm, copen, 𝑢] in Tblcom, it

sets 𝑣 ← 𝑢.
(5) Else, it proceeds as follows:
(a) If there is an entry [ccom′, cm′, copen′, 1] in Tblcom

such that cm ≠ cm′, it sets 𝑣 ← 0.
(b) Else, it proceeds as follows:

(i) It sets 𝑣 ← COM.Verify(sid, cparcom,

ccom′, cm, copen).
(ii) It appends [ccom′, cm, copen, 𝑣] to Tblcom.

(6) It sends (sid,Com_Verify_End, 𝑣) to 𝑃𝑖 .

Figure 9: The non-interactive commitment functionality

FNIC interacting with the simulator S.

The signature of knowledge functionality.A signature of knowl-
edge (SoK) allows any party who can prove a public statement to
sign a message without revealing anything except that the state-
ment is true. A signature of knowledge scheme consists of two
algorithms, Sign and Verify. The algorithm Sign allows anyone
holding a witness𝑤 for a statement 𝑥 in some language 𝐿 such that
𝑀𝐿 (𝑥,𝑤) = 1, where𝑀𝐿 is the relation for 𝐿, to produce a signature
𝜎𝑚,𝑥,𝐿 on a message𝑚. The algorithm Verify verifies if a signature
𝜎 on message𝑚 with statement 𝑥 is valid. The latter implies that
the signer is aware of a witness𝑤 such that𝑀𝐿 (𝑥,𝑤) = 1.

In the UC framework, the notion of SoK is captured by the fol-
lowing functionality (cf. [17]):

The Signature of Knowledge functionality FSOK (𝐿).

■Upon receiving (sid, Setup) from any party 𝑃 , it verifies
that sid = (𝑀𝐿, sid′) for some sid′. If not, then it ignores
the request. Else, if this is the first time that (sid, Setup)
was received, then it sends (sid, Setup) to S. Upon receiv-
ing (sid,Algorithms, Verify, Sign, SimSign, Extract from
S, where Sign, SimSign and Extract are descriptions of
PPT TMs, and Verify is a description of a deterministic
polynomial time TM, it stores these algorithms. It sends
(sid,Algorithms, Sign, Verify) to 𝑃 .
■ Upon receiving (sid, Sign,𝑚, 𝑥,𝑤) from 𝑃 , it checks
that 𝑀𝐿 (𝑥,𝑤) = 1. If not, it ignores the requests.
Else, it computes 𝜎 ← SimSign(m,x) and checks that
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Verify(𝑚, 𝑥, 𝜎) = 1. If so, then it records the entry
(𝑚, 𝑥, 𝜎) and sends (sid, Signature,𝑚, 𝑥, 𝜎) to 𝑃 . Else, it sends
(sid,Completeness_Error) to 𝑃 and halts.
■ Upon receiving (sid,Verify,𝑚, 𝑥, 𝜎) from some party
𝑉 , if (𝑚, 𝑥, 𝜎 ′) is stored for some 𝜎 ′, then it sends
(sid,Verified,𝑚, 𝑥, 𝜎, Verify(𝑚, 𝑥, 𝜎)) to 𝑉 . Else, it com-
putes 𝑤 ← Extract(𝑚, 𝑥, 𝜎); if 𝑀𝐿 (𝑥,𝑤) = 1, it
sends (sid,Verified,𝑚, 𝑥, 𝜎, Verify(𝑚, 𝑥, 𝜎)) to 𝑉 . Else, if
Verify(𝑚, 𝑥, 𝜎) = 0, it sends (sid,Verified,𝑚, 𝑥, 𝜎, 0) to 𝑉 .
Else, it sends (sid,Unforgeability_Error) to 𝑉 and halts.

Figure 10: The signature of knowledge functionality

FSOK for language 𝐿 interacting with the simulator S.

The time-lock encryption functionality.We use the time-lock

encryption (TLE) functionality from [3] to guarantee that no inter-
mediate results leak before the tally phase.

The time-lock encryption functionality F leak,delay
TLE .

It initializes the list of recorded messages/ciphertexts 𝐿rec as
empty and defines the tag space TAG.
■Upon receiving (sid,Corrupt, Pcorr) from S, it records the
corrupted set Pcorr.
■Upon receiving (sid, Enc,𝑚, 𝜏) from 𝑃 ∉ Pcorr, it reads the
time Cl and does:

(1) If 𝜏 < 0, it returns (sid, Enc,𝑚, 𝜏,⊥) to 𝑃 .
(2) It picks tag

$← TAG and it inserts the tuple
(𝑚,Null, 𝜏, tag,Cl, 𝑃) → 𝐿rec.

(3) It sends (sid, Enc, 𝜏, tag,Cl, 0 |𝑚 |) to S. Upon receiving
the token back from S it returns (sid, Encrypting) to
𝑃 .

■Upon receiving (sid,Update, {(𝑐 𝑗 , tag𝑗 )}
𝑝 (_)
𝑗=1 ) from S, for

all 𝑐 𝑗 ≠ Null it updates each tuple (𝑚 𝑗 ,Null, 𝜏 𝑗 , tag𝑗 ,Cl𝑗 , 𝑃)
to (𝑚 𝑗 , 𝑐 𝑗 , 𝜏 𝑗 , tag𝑗 ,Cl𝑗 , 𝑃)
■Upon receiving (sid, Retrieve) from 𝑃 , it reads the time
Cl from Gclock and it returns (sid, Encrypted, {(𝑚,𝑐 ≠

Null, 𝜏)}∀(𝑚,𝑐,𝜏,·,Cl′,𝑃 ) ∈𝐿rec:Cl−Cl′≥delay) to 𝑃 .
■Upon receiving (sid,Dec, 𝑐, 𝜏) from 𝑃 ∉ Pcorr:

(1) If 𝜏 < 0, it returns (sid,Dec, 𝑐, 𝜏,⊥) to 𝑃 . Else, it reads
the time Cl from Gclock and:

(a) If Cl < 𝜏 , it sends (sid,Dec, 𝑐, 𝜏,More_Time) to 𝑃 .
(b) If Cl ≥ 𝜏 , then

– If there are two tuples
(𝑚1, 𝑐, 𝜏1, ·, ·, ·), (𝑚2, 𝑐, 𝜏2, ·, ·, ·) in 𝐿rec such that
𝑚1 ≠ 𝑚2 and 𝑐 ≠ Null where 𝜏 ≥ max{𝜏1, 𝜏2}, it
returns to 𝑃 (sid,Dec, 𝑐, 𝜏,⊥).
– If no tuple (·, 𝑐, ·, ·, ·, ·) is recorded in 𝐿rec, it sends
(sid,Dec, 𝑐, 𝜏) to S and returns to 𝑃 whatever it re-
ceives from S.

– If there is a unique tuple (𝑚,𝑐, 𝜏dec, ·, ·, ·) in 𝐿rec,
then if 𝜏 ≥ 𝜏dec, it returns (sid,Dec, 𝑐 , 𝜏 ,𝑚) to 𝑃 . Else,
if Cl < 𝜏dec, it returns (sid, Dec, 𝑐 , 𝜏 , More_Time)
to 𝑃 . Else, if Cl ≥ 𝜏dec > 𝜏 , it returns (sid, Dec, 𝑐 , 𝜏 ,
Invalid_Time) to 𝑃 .

■ Upon receiving (sid, Leakage) from S, it
reads the time Cl from Gclock and returns
(sid, Leakage, {(𝑚,𝑐, 𝜏)}∀(𝑚,𝑐,𝜏≤leak(Cl),·,·,·) ∈𝐿rec ) to S.
■Whatever message it receives from 𝑃 ∈ Pcorr, it forwards it
to S and vice versa.

Figure 11: The functionality F leak,delay
TLE parameterized by

_, a leakage function leak, a delay variable delay ,inter-

acting with simulator S, parties in P, and global clock

Gclock.

The wrapper functionality. We recall the wrapper functionality
W𝑞 in [3], for the special case where the wrapped evaluation func-
tionality is the random oracle FRO. The wrapperW𝑞 allows the
parties to access FRO only up to 𝑞 times per round (clock tick).

The wrapper functionalityW𝑞 (FRO,Gclock, P).

■Upon receiving (sid,Corrupt, Pcorr) from S, it records the
corrupted set Pcorr.
■Upon receiving (sid, Evaluate, (𝑥1, . . . , 𝑥 𝑗 )) from 𝑃 ∈ P \
Pcorr it reads the time Cl from Gclock and does:

(1) If there is not a list 𝐿𝑃 it creates one, initially as empty.
Then it does:

(a) For every 𝑘 in {1, . . . , 𝑗}, it forwards the message
(sid, Evaluate, 𝑥𝑘 ) to FRO.

(b) When it receives back all the corresponding oracle
responses 𝑦1, . . . , 𝑦 𝑗 , it inserts the tuple-(Cl, 1) ∈ 𝐿𝑃 .

(c) It sends (sid, Evaluate, ((𝑥1, 𝑦1), . . . , (𝑥 𝑗 , 𝑦 𝑗 ))) to 𝑃 .
(2) Else if there is a tuple-(Cl, 𝑗c) ∈ 𝐿𝑃 with 𝑗c < 𝑞, then it

changes the tuple to (Cl, 𝑗c + 1), and repeats the above
steps 1a,1c.

(3) Else if there is a tuple-(Cl∗, 𝑗c) ∈ 𝐿𝑃 such that Cl∗ < Cl,
it updates the tuple as (Cl, 1), and repeats the above
steps 1a,1b,1c.

■Upon receiving (sid, Evaluate, (𝑥1, . . . , 𝑥 𝑗 )) from 𝑃 ∈ Pcorr
it reads the time Cl from Gclock and repeats steps 1,3 except
that it maintains the same list, named 𝐿corr, for all the cor-
rupted parties.

Figure 12: The Functionality wrapperW𝑞 parameterized

by a number of queries 𝑞, functionality FRO, Gclock and
the parties in P.
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C REALIZING FNIC AND FSOK WITHOUT

TRUSTED PARTY

C.1 Realizing universally composable

non-interactive commitments without

trusted party

In this section we present a protocol that UC realises FNIC given
in Figure 9 in the CRS model. Fist we present the definition of a
non-interactive commitment scheme and the security properties that
need to satisfy in order to argue about its security. Next, we present
a theorem that says that any construction that satisfy the presented
security properties UC realises FNIC. Finally, we present such con-
struction and thus we have a concrete UC realization of FNIC.
Non-interactive commitments: A non-interactive commitment

scheme (NIC) consists of three algorithms name CSetup; generates
the common parameters of the commitment scheme, Com; computes
the commitment of a committed value and some auxiliary informa-
tion necessary for verifying the opening of the commitment VfCom;
verifies if a value and a commitment are correlated by providing the
value the commitment and the auxiliary information given from
Com.

We say that a NIC scheme is hiding when the commitment does
not reveal nothing about the committed value. Similar, it is said
binding if the commitment open to a unique value with high proba-
bility. Formally as presented in [11]:

Definition C.1 (Binding). A commitment scheme is binding if for
any PPT adversary A, it holds that:

Pr
[

par𝑐 ← CSetup(1_ ) ; (com, 𝑥, open, 𝑥′, open′) ← A(par𝑐 ) :
(𝑥, 𝑥′) ∈ M2 ∧ 1 = VfCom(par𝑐 , com, 𝑥, open)∧
1 = VfCom(par𝑐 , com, 𝑥′, open′) ∧ 𝑥 ≠ 𝑥′

]
≤ a (_)

Definition C.2 (Hiding). A commitment scheme is hiding if for
any PPT adversary A it holds that:

Pr
[

par𝑐 ← CSetup(1_ ) ; (𝑥0, 𝑥1, st) ← A(par𝑐 ) ;
𝑏 ←↪ U[0, 1]; (com, open) ← Com(par𝑐 , 𝑥𝑏 ) ;
𝑏′ ← A(com) : (𝑥0, 𝑥1) ∈ M2 ∧ 𝑏 = 𝑏′

]
≤ 1

2
+ a (_)

where in the above definitions par𝑐 is the parameters of the NIC
scheme,M is the message space,U[0, 1] the uniform distribution
on [0, 1], and com and open are the resulting commitment and its
opening respectively and a is a negligible function.
Trapdoor commitments: With a special type of NIC, which is
called trapdoor NIC, one can build dummy commitments that are
not related to anymessage. Then, by using the trapdoor information
(if it is available to the user) can produce a proof of valid opening
to any value. This special type of commitment is very useful in
proving security properties (e.g in UC the simulator can equivocate
by using the trapdoor information) but at the same time the security
breaches if someone knows the trapdoor information (e.g binding
properties does not hold). Formally as presented in [11].

Definition C.3 (Trapdoor NIC). There exist polynomial-time algo-
rithms CSimSetup, ComOpen and TrapOpen, where CSimSetup on
input 1_ outputs parameters par𝑐 with trapdoor td𝑐 such that: (1)
par𝑐 are indistinguishable from those produced by CSetup, and, (2)
for any 𝑥, 𝑥 ′ ∈ M holds:

�������Pr


(par𝑐 , td𝑐 ) ← CSimSetup(1_) ;
(com, open′) ← Com(par𝑐 , 𝑥′) ;
open← ComOpen(par𝑐 , td𝑐 , 𝑥, 𝑥′, open′) :
1 = A(par𝑐 , td𝑐 , com, open)

 −
− Pr


(par𝑐 , td𝑐 ) ← CSimSetup(1_) ;
(com, open) ← Com(par𝑐 , 𝑥)) ;
1 = A(par𝑐 , td𝑐 , com, open)


������ ≤ a (_)

Below, we present the theorem as presented in [10, full version,
Theorem 4] that links NIC’s security definition with the UC real-
ization of FNIC.

Theorem C.4. The construction ΠNIC [10] UC realizes FNIC in the

F CSetup
CRS -hybridmodel if the underlying NIC scheme (CSetup, Com, VfCom)

is binding and trapdoor according to Definitions C.1 and C.3, respec-

tively.

A binding and trapdoor NIC: In [10], it is shown that Pedersen’s
NIC scheme [55] satisfies both binding and trapdoor, and thus we
have a concrete instantiation of a protocol ΠNIC that UC realizes
FNIC. The lemma is given bellow.

Lemma C.5. The Pedersen’s non-interactive commitment scheme

(CSetup, Com, VfCom) is binding and trapdoor as long as the discrete
logarithm problem is hard.

C.2 Realizing universally composable signature

of knowledge without trusted party

A signature of knowledge (SoK) allows any party who can prove
a public statement to sign a message without revealing anything
except that the statement is true. A signature of knowledge scheme
consists of two algorithms, Sign and Verify. The algorithm Sign
allows anyone holding a witness𝑤 for a statement 𝑥 in some lan-
guage 𝐿 such that𝑀𝐿 (𝑥,𝑤) = 1, where𝑀𝐿 is the relation for 𝐿, to
produce a signature 𝜎𝑚,𝑥,𝐿 on a message𝑚. The algorithm Verify
verifies if a signature 𝜎 on message 𝑚 with statement 𝑥 is valid.
The latter implies that the signer is aware of a witness𝑤 such that
𝑀𝐿 (𝑥,𝑤) = 1.

In the UC framework, the notion of SoK is captured by function-
ality FSOK [17] (cf. Figure 10).

In E-cclesia, we use signatures of knowledge for authenticat-
ing the eligible ballots. Specifically, eligible voters in the casting
phase sign their ballots with the knowledge that they belong to
the eligibility list without revealing their actual identity. This step
ensures that the privacy of the voter is preserved, as the ballot and
the voter’s identity cannot be linked.
UC realization of FSOK.We outline the realization of FSOK pro-
vided in [17]. The supported language is the universal language

𝑈𝑝 , where for some polynomial 𝑝 , the statement 𝑥 would contain
a description of a TM 𝑀 and an instance 𝑥 ′ such that 𝑥 ∈ 𝑈𝑝 iff
there exists𝑤 such that𝑀 (𝑥 ′,𝑤) halts and accepts in time at most
𝑝 ( |𝑥 |). The protocol design builds upon (i) a SoK scheme Σ and (ii)
the FCRS functionality (cf. Fig. 7), parameterized by the distribution
of Σ parameters’ generation. In [17, Theorem 2.2], it is shown that
the said protocol UC-realizes FSOK (𝑈𝑝 ) in the FCRS-hybrid model
if and only if Σ satisfies a gamed-based definition called SimExt-

security [17, Definition 2.2]. Subsequently, the authors provide a
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construction of a SoK scheme with SimExt-security based on two
main building blocks: CPA-secure dense cryptosystems [28, 32] and
simulation-sound non-interactive zero-knowledge proofs [61]. The
latter step completes the realization of FSOK (𝑈𝑝 ).

D SECURITY PROPERTIES OF E-CCLESIA

We informally discuss the details that render our protocol secure
w.r.t. the properties listed in Subsection 3.3.
1) Correctness: is achieved by the binding property of the com-
mitment scheme (cf. Definition C.1), the correctness of all other
cryptographic primitives, and the availability of the underlying
broadcast network. In particular, all ballots will be delivered to all
voters and a malicious party cannot create a different valid creden-
tial cr′ for a broadcast commitment ĉr that was created originally
for the honest voter’s credential cr.
2) Eligibility: is satisfied by the security of the accumulator (cf.
Definition G.2), the unforgeability of the SoK scheme (cf. Figure 10),
the binding property of the commitment scheme, and the fact that
the voters store only the credential commitments that they received
from the eligible voters during the Credential generation phase.
In addition, network availability and synchronicity is essential, so
that the voters agree on (i) the transition between election phases,
and (ii) the order of the received commitments that are going to
produce the final accumulated value. Given the above, at verification
Step 1, the voter is ascertained that no invalid credential has been
added to the accumulator.
3)Fairness: is achieved by the security of the TLE algorithms. Namely,
no broadcast encrypted vote can be decrypted before the Tally

phase begins (at time 𝑡open). Therefore, no party can learn some
partial result before that point. This is exactly what TLE offers,
decryption by everyone when a specific time has been reached.
4) Voter Privacy: is preserved by the anonymity offered by the anony-
mous broadcast channel (cf. Figure 2), as well as the hiding property
of the commitment scheme (cf. Definition C.2). In particular, upon
receiving a credential cr during the Cast phase, a party cannot link
cr to the corresponding commitment ĉr this party recorded during
the Credential generation phase.
5) One voter-one vote: is guaranteed by the multiple triple elimi-
nation Step 2, where the voter performs the pairwise check for
possible matching credentials.
6) Verifiability: is supported by the security of the authenticated
broadcast channel, the unforgeability of the SoK scheme, and the
correctness of the TLE scheme.

E MODULAR DESIGN

E.1 The eligibility functionality Felig

Felig (SA,V, delay_cast, Status).

The functionality initializes the lists of eligible voters 𝐿elig ←
∅, of authenticated ballots of eligible voters 𝐿auth ← ∅, the
value 𝑆𝑡fin = 0. Upon receiving (sid,Corrupt,Vcorr) from S,
if Vcorr ⊆ V, it fixes Vcorr as the set of corrupted voters.
■ Upon receiving (sid, Eligible,Velig,O, 𝑡cast, 𝑡open) from
SA, if Velig ⊆ V and 𝑡cast < 𝑡open, it sends

(sid,Setup_Elig,Velig,O, 𝑡cast, 𝑡open) to S. Upon receiv-
ing (sid, Setup_Elig, GenCred, AuthBallot, VrfyBallot,
UpState, 𝑆𝑡gen) from S, then:

(1) It sets ®𝑡 ← (𝑡cast, 𝑡open, delay_cast) and reg.par :=
(Velig,O, ®𝑡, 𝑆𝑡gen) as registration parameters.

(2) It sends (sid, Elig_Par, reg.par) to all voters in V and
S.

■Upon receiving (sid,Gen_Cred) from 𝑉 ∈ Velig \ Vcorr, it
reads the time Cl from Gclock. If Status(Cl, ®𝑡,Cred) = ⊤, it
executes the following steps:

(1) If there is no tuple (𝑉 , cr′, ĉr′, aux′, 1) in 𝐿elig, it runs
(cr, ĉr, aux) ← GenCred(1_ , reg.par). If there are tu-
ples (·, cr, ·, ·, ·) or (·, ·, ĉr, ·, ·) in 𝐿elig or (cr, rc) = ⊥,
it sends (sid, Gen_Cred,⊥) to𝑉 and halts. Else, it adds
(𝑉 , cr, rc, aux, 1) to 𝐿elig after permission of S via de-
layed output with (𝑉 , ĉr) as information leakage.

(2) It sends (sid,Gen_Cred,𝑉 , ĉr, sender) to 𝑉 and
(sid,Gen_Cred,𝑉 , ĉr) to all other voters in V \ {𝑉 }
and S.

■Upon receiving (sid,Gen_Cred) from𝑉 ∈ Velig∩Vcorr, it for-
wards the message (sid,Gen_Cred,𝑉 ) to S. Upon receiving
(sid,Gen_Cred,𝑉 , cr, ĉr, aux) from S, it does:

(1) If there are no tuples (𝑉 , cr′, ĉr′, aux′, 0), (·, cr, ·, ·, 1) or
(·, ·, ĉr, ·, 1) in 𝐿elig, then it adds (𝑉 , cr, ĉr, aux, 0) to 𝐿elig.

(2) It sends (sid,Gen_Cred,𝑉 , ĉr) to all voters in V \ {𝑉 }
and S.

■Upon receiving (sid,Auth_Ballot, 𝑣) from𝑉 ∈ Velig \Vcorr,
then it reads the time Cl from Gclock. If Status(Cl, ®𝑡,Cast) =
⊤, it executes the following steps:

(1) If 𝑆𝑡fin = 0, then it runs 𝑆𝑡fin ←
UpState(𝑆𝑡gen, {ĉr| (·, ·, ĉr, ·) ∈ 𝐿elig}).

(2) If there is a tuple (𝑉 , cr, ĉr, aux, 1) ∈ 𝐿elig
but no (𝑉 , 𝑣 ′, cr, 𝜎 ′, 1) ∈ 𝐿auth, then it runs
𝜎 ← AuthBallot(𝑣, cr, 𝑆𝑡fin, reg.par, aux). If
VrfyBallot(𝑣, 𝜎, 𝑆𝑡fin, reg.par) = 0, it sends (sid,
Auth_Ballot, ⊥) to 𝑉 and halts. Else, it (i) adds (𝑉 , 𝑣 ,
cr, 𝜎 , 1) to 𝐿auth, and (ii) returns (sid, Auth_Ballot,
𝑣 , ®𝜎 = (cr, 𝜎)) to 𝑉 .

■Upon receiving (sid,Auth_Ballot,𝑉 , 𝑣, ®𝜎 = (cr, 𝜎)) from
S, if there is a tuple (𝑉 , cr, ĉr, aux, 0) ∈ 𝐿elig, then it adds
(𝑉 , 𝑣, cr, 𝜎, 0) to 𝐿auth. It returns (sid,Auth_Ballot,𝑉 , 𝑣, ®𝜎)
to 𝑉 .
■Upon receiving (sid,Ver_Ballot, 𝑣, ®𝜎 = (cr, 𝜎)) from𝑉 ∈ V:

(1) It computes 𝑥 ← VrfyBallot(𝑣, (cr, 𝜎), 𝑆𝑡fin, reg.par).
(2) If there is cr such that there are tuples
(·, cr, ·, ·, ·, 1) ∈ 𝐿elig and (·, 𝑣, cr, 𝜎, 1) ∈ 𝐿auth, it
sends (sid,Ver_Ballot, 𝑣, (cr, 𝜎), 1) to 𝑉 .

(3) If 𝑥 = 1 and there is no cr such that there are tuples
(·, cr, ·, ·, ·, ·) ∈ 𝐿elig and (·, 𝑣, cr, 𝜎, ·) ∈ 𝐿auth, it sends
(sid,Ver_Ballot, 𝑣, (cr, 𝜎),⊥) to 𝑉 and halts.
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(4) If 𝑥 = 1 and there are tuples (·, 𝑣, cr, 𝜎, 0),
(·, 𝑣 ′, cr′, 𝜎 ′, 1) ∈ 𝐿auth such that cr = cr′ and 𝑣 ≠ 𝑣 ′, it
sends (sid,Ver_Ballot, 𝑣, (cr, 𝜎),⊥) to 𝑉 and halts.

(5) Else, it sends (sid,Ver_Ballot, 𝑣, (cr, 𝜎), 𝑥) to 𝑉 .
■ Upon receiving

(
sid, Link_Ballots, (𝑣1, (cr1, 𝜎1)),

(𝑣2, (cr2, 𝜎2))
)
from 𝑉 ∈ V, if there are tuples (·, 𝑣1, cr1, 𝜎1, ·),

(·, 𝑣2, cr2, 𝜎2, ·) ∈ 𝐿auth such that cr1 = cr2, then it sets 𝑥 = 1.
If there are such tuples but cr1 ≠ cr2, then it sets 𝑥 = 0. Then,
it sends

(
sid, Link_Ballots, (𝑣1, (cr1, 𝜎1)), (𝑣2, (cr2, 𝜎2)), 𝑥

)
to 𝑉 .

Figure 13: The eligibility functionality Felig parameter-

ized by delay_cast, Status, interacting with the voters in

V, SA, and simulator S.

E.2 The vote management functionality Fvm

Fvm (SA,V, delay_gen, delay_cast, Status).

The functionality initializes as empty the lists of generated
ballots 𝐿gball, cast ballots 𝐿cast, pending for reception ballots
𝐿pend, and a list 𝐿adv of the (dummy) parties that have submit-
ted an Advance_Clock message for the current round. Upon
receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V, it fixes
Vcorr as the set of corrupted voters.

Each time the functionality receives a command message
it executes the delayed ballot casting procedure as described
below:

Delayed ballot casting: Upon receiving
(sid/sid𝐶 ,I, input) from 𝑉 ∈ V \ Vcorr,
where I ∈ {Gen_Ballot, Retrieve,Cast,Open
,Advance_Clock, Read_Clock}, it reads the time Cl from
Gclock. If V \ Vcorr ⊆ 𝐿adv, it sends (sid𝐶 ,Advance_Clock)
to Gclock to proceed to the next round. Upon receiving
(sid𝐶 ,Advanced_Clock, Fvm) from Gclock, it does:

(1) For every triple (𝑀∗,𝑉 ∗,Cl∗) ∈ 𝐿pend
such that Cl − Cl∗ = delay_cast, it sends
(sid,Cast_Ballot, 𝑀∗, sender) to 𝑉 ∗ and
(sid,Cast_Ballot, 𝑀∗) to all voters in V \ {𝑉 ∗}
and S. Then, it removes (𝑀∗,𝑉 ∗,Cl∗) from 𝐿pend.

(2) It sets 𝐿adv as empty.
Then, it executes (sid/sid𝐶 ,I, input) as follows.

■ Upon receiving (sid, Election_Info,Velig,O, 𝑡cast, 𝑡open)
from SA for the first time, if Velig ⊆ V and 𝑡cast < 𝑡open it sets
®𝑡 ← (𝑡cast, 𝑡open, delay_cast) and vote.par := (Velig,O, ®𝑡) as
voting parameters and sends (sid, Election_Info, vote.par)
to SA and S.
■ Upon receiving (sid,Gen_Ballot, 𝑜) from 𝑉 ∉ Vcorr, if
𝑜 ∈ O, it reads the time Cl from Gclock and does:

(1) If there is no tuple
(
𝑉 , 𝑣 ′, 𝑜 ′, tag′,Cl′, 1

)
∈ 𝐿gball,

it (i) picks tag
$← TAG and it inserts the

tuple
(
𝑉 ,Null, 𝑜, tag,Cl, 1

)
→ 𝐿gball, (ii) sends

(sid,Gen_Ballot, tag,Cl, 0 |𝑜 |) to S. Upon receiving
the token back from S, it returns (sid,Generating) to
𝑉 .

(2) Else, it returns (sid,Gen_Ballot, 𝑜,⊥) to 𝑉 .
■ Upon receiving (sid,Gen_Ballot) from 𝑉 ∈ Vcorr,
it sends the message (sid,Gen_Ballot,𝑉 ) to S. Upon
receiving (sid,Gen_Ballot, 𝑜, 𝑣,𝑉 ) from S, it sends
(sid,Gen_Ballot, 𝑜, 𝑣) to 𝑉 .

■Upon receiving (sid,Update, {(𝑣 𝑗 , tag𝑗 )}
𝑝 (_)
𝑗=1 ) from S for

all 𝑣 𝑗 ≠ Null, if there is a tuple (·, 𝑣 𝑗 , ·, ·, ·, 1) ∈ 𝐿gball or
if there are 𝑗, 𝑗∗ ∈ [1, 𝑝 (_)] such that 𝑣 𝑗 = 𝑣 𝑗∗ , it returns
(sid,Update, {(𝑣 𝑗 , tag𝑗 )}

𝑝 (_)
𝑗=1 ,⊥) to S. Else, it updates each

tuple (𝑉 ,Null, 𝑜 𝑗 , tag𝑗 ,Cl𝑗 , 1) to (𝑉 , 𝑣 𝑗 , 𝑜 𝑗 , tag𝑗 ,Cl𝑗 , 1).
■Upon receiving (sid, Retrieve) from 𝑉 ∉ Vcorr it reads the
time Cl from Gclock and does:

(1) If there is a tuple
(
𝑉 , 𝑣, 𝑜, tag,Cl′, 1

)
∈ 𝐿gball with

𝑣 ≠ Null and Cl − Cl′ ≥ delay_gen, it returns
(sid, Retrieve, (𝑜, 𝑣)) to 𝑉 .

(2) Else, it returns (sid, Retrieve,⊥) to 𝑉 .
■Upon receiving

(
sid,Cast, 𝑣, ®𝜎

)
from 𝑉 , if 𝑉 ∈ Velig \ Vcorr

it reads the time Cl from Gclock. If Status(Cl, ®𝑡,Cast) = ⊤, it
does:

(1) If there is no tuple (𝑉 , 𝑣, ·, ·,Cl′, 1) ∈ 𝐿gball orCl−Cl′ <
delay_gen, it returns (sid,Cast, 𝑣, ®𝜎,⊥) to 𝑉 .

(2) If there is no (𝑉 , 𝑣 ′, ®𝜎 ′,Cl′, 1) ∉ 𝐿cast, it adds
(𝑉 , 𝑣, ®𝜎,Cl, 1) to 𝐿cast and ((𝑣, ®𝜎),𝑉 ,Cl) to 𝐿pend.

(3) If there is a tuple (𝑉 , 𝑣 ′, ®𝜎 ′,Cl′, 1) in 𝐿cast, it returns
(sid,Cast, 𝑣, ®𝜎,⊥) to 𝑉 .

■Upon receiving
(
sid,Cast, 𝑣, ®𝜎,𝑉

)
from S, if 𝑉 ∈ Vcorr, it

reads the time Cl from Gclock. If Status(Cl, ®𝑡,Cast) = ⊤, it
adds (𝑉 , 𝑣, ®𝜎,Cl, 0) to 𝐿cast and ((𝑣, ®𝜎),𝑉 ,Cl) to 𝐿pend.
■Upon receiving (sid𝐶 ,Advance_Clock) from a voter 𝑉 ∈
V \ Vcorr, if 𝑃 ∉ 𝐿adv, it adds 𝑃 to 𝐿adv and forwards
(sid𝐶 ,Advance_Clock) to Gclock on behalf of 𝑃 .
■ Upon receiving (sid𝐶 , Read_Clock) from a voter 𝑉 ∈
V \ Vcorr, it reads the time Cl from Gclock and returns
(sid𝐶 , Read_Clock,Cl) to 𝑃 .
■Upon receiving (sid,Open, 𝑣) from any party 𝑃 ∈ V ∪ {S},
it reads the time Cl from Gclock. If Status(Cl, ®𝑡, Tally) = ⊤, it
does:

(1) If there is a tuple (𝑉 , 𝑣, ®𝜎, ·, ·) ∈ 𝐿cast, and a unique

(·, 𝑣, 𝑜, ·, ¤,1) ∈ 𝐿gball, it sends (sid,Open, 𝑣, 𝑜) to 𝑃 .
(2) Else, if there is a tuple (𝑉 , 𝑣, ®𝜎, ·, ·) ∈ 𝐿cast but there is

no tuple (𝑉 , 𝑣, 𝑜, , ·, ·, 1) ∈ 𝐿gball, it sends (sid,Open, 𝑣)
to S. Then, it sends the reply it gets from S to 𝑃 .

■Upon receiving (sid, Leakage) from S, it reads the time Cl
from GClock. If Status(Cl, ®𝑡,Cred) = Status(Cl, ®𝑡,Cast) =
Status(Cl, ®𝑡, Tally) = ⊥ or Status(Cl, ®𝑡, Tally) = ⊤, then it
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returns to S all the triples (𝑣, 𝑜, 1) such that (·, 𝑣, 𝑜, ·, ·, 1) ∈
𝐿gball ∧ (·, 𝑣, ·, ·, 1) ∈ 𝐿cast.

Figure 14: The vote management functionality Fvm pa-

rameterized by delay_gen, delay_cast, Status, interacting
with the voters in V, SA and simulator S.

E.3 The hybrid STE protocol Π
Felig,Fvm
STE

Below we present the protocol ΠFelig,FvmSTE that UC realizes FSTE in
the (Fvm, Felig,Gclock)-hybrid model (cf. Theorem 5.1). The proto-
col can be distinct into four phases (similar to FSTE), Setup, Cre-
dential generation, Cast, Tally.

E.3.1 Protocol description. In the Setup phase, SA accepts the set of
the eligible voters Velig, the set of valid election preferences O, and
the times that define the duration of the election (𝑡open, 𝑡open) from
Z. Then, SA calls both Felig and Fvm for setting up the parameters
of the election.

Following up, in the Credential generation phase each voter
𝑉 generates their credential upon request fromZ. Specifically, 𝑉
calls Felig and either receives the public part of her credential or ⊥,
in case a credential request has been made in the past.

Next, in the Cast phase each voter𝑉 after receiving a cast ballot
request fromZ, she generates her ballot by calling Fvm. If the time
that is required for ballot generation, delay_gen, is equal to 0, then
she retrieves her ballot in the same round from Fvm and executes
the Cast procedure. Specifically, she authenticates it by calling Felig
and broadcasts it by calling Fvm. In any other case she returns
Casting toZ.

In case 𝑉 receives a clock advancement command fromZ, she
checks if her ballot is generated (e.g. time delay_gen has been
elapsed) by sendingRetrieve toFvm. If this is the case, she executes
the Cast procedure.

Finally, in the Tally phase, each voter 𝑉 upon request from
Z produces the election outcome. Specifically, each voter verifies
if each one of the cast ballots is originated from eligible voters
by calling Felig. She keeps the ballots that pass the verification
of Felig and drop the others. Next, for the remaining ballots, she
check through Felig if more than one ballots are linked to the same
voter (cf. Link_Ballots command message). If she found ballots
that re-linked to the same voter (without knowing exactly which
one), then she keeps the first one in the order they received them
(note that the receiving order is the same for every voter). Last,
for the remaining ballots she requests a ballot opening by issuing
the command message Open to Fvm. The tally is the multiset of all
ballot openings that are valid election preferences.

Π
Felig,Fvm
STE (SA,V, delay_gen, delay_cast, Status).

Setup.

■ Upon receiving (sid, Election_Info,Velig,O, 𝑡cast, 𝑡open)
from Z, if Velig ⊆ V and 𝑡cast < 𝑡open, SA sends
(sid, Setup_Info,Velig,O, 𝑡cast, 𝑡open) to Fvm. Else, SA

returns (sid, Election_Info,Velig, 𝑡cast, 𝑡open,⊥) toZ. Upon
receiving (sid, Election_Info, vote.par) from Fvm, SA
sends (sid, Eligible,Velig,O, 𝑡cast, 𝑡open) to Felig which sends
reg.par to all voters in V. Upon receiving reg.par from
Felig, each voter 𝑉 ∈ V stores reg.par as the registration
parameters and initializes a multiset T as empty. She also sets
®𝑡 ← (𝑡cast, 𝑡open, delay_cast).
Credential generation. This phase is completely managed
by Felig.
■ Upon receiving (sid,Gen_Cred) from Z, 𝑉 sends
(sid,Gen_Cred) to Felig, which in turn sends
(sid,Gen_Cred,𝑉 , ĉr) to all voters in V (or sends
(sid,Gen_Cred,⊥) to 𝑉 and halts).
Cast. Here, Fvm and Felig combined carry out the ballot
generation, authentication and casting tasks.
■ Upon receiving

(
sid,Cast, 𝑜

)
from Z, 𝑉 executes the

following steps:
(1) She sends (sid,Gen_Ballot, 𝑜) to Fvm which

replies either with (sid,Generating) or
(sid,Gen_Ballot, 𝑜,⊥). In the second case, she
forwards the message toZ.

(2) If delay_gen = 0 she sends (sid, Retrieve) to Fvm.
Upon receiving (sid, Retrieve, (𝑜, 𝑣)) from Fvm she
does the Cast step as described below.

(3) In any other case, she returns (sid,Casting) toZ.
■Upon receiving (sid𝐶 ,Advance_Clock) from Z, 𝑉 sends
(sid, Retrieve) to Fvm. Upon receiving (sid, Retrieve, (𝑜, 𝑣))
from Fvm she does the Cast step as described below.
• Cast: She sends (sid, Auth_Ballot, 𝑣) to Felig which
replies with the authentication receipt for 𝑣 as (sid,
Auth_Ballot, 𝑣 , ®𝜎) (or sends (sid, Auth_Ballot, ⊥)
to 𝑉 and halts). Finally, she sends

(
sid,Cast, 𝑣, ®𝜎

)
to

Fvm which broadcasts the message to all voters in V
after delay_cast rounds. In turn, the voters store the
received pair (𝑣, ®𝜎).

Then, she sends (sid𝐶 ,Advance_Clock) to Gclock.
Tally. In order for the voter to perform self-tallying, she ac-
cesses Felig for ballot verification and linkability and Fvm for
ballot opening.
■ Upon receiving a message

(
sid,Tally

)
from Z, if

Status(Cl, ®𝑡, Tally) = ⊥, then 𝑉 ignores the message. Oth-
erwise, if T = ∅, 𝑉 executes the following steps:

(1) For every tuple
(
sid, Cast_Ballot, 𝑣 , ®𝜎

)
she has ob-

tained from Fvm, 𝑉 sends (sid, Ver_Ballot, 𝑣 , ®𝜎) to
Felig which replies with (sid, Ver_Ballot, 𝑣 , ®𝜎 , 𝑥),
where 𝑥 ∈ {0, 1,⊥}.
If there is any ballot verification request such that Felig
replied with 𝑥 = ⊥, then 𝑉 discards that ballot. Other-
wise, she includes in her tally set all pairs (𝑣 , ®𝜎) such
that Felig replied with 𝑥 = 1.

(2) 𝑉 discards multiple ballots as follows: for every
pair (𝑣 , ®𝜎), (𝑣 ′, ®𝜎 ′) in her tally set, she sends

(
sid,

Link_Ballots, (𝑣 , ®𝜎), (𝑣 ′, ®𝜎 ′)
)
to Felig. If she gets

(
sid,
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Link_Ballots, (𝑣 , ®𝜎), (𝑣 ′, ®𝜎 ′), 1
)
as a response, then

she discards the ballot she received the last out of those
two. Clearly, after this pairwise check is completed, all
except one of ballots that are linked will be removed
from the tally set, so that one voter-one vote is guaran-
teed.

(3) For every pair (𝑣, ®𝜎) in the tally set,𝑉 sends (sid,Open,
𝑣) to Fvm, which replies with the opening (sid,Open, 𝑣 ,
𝑜). If 𝑜 ∈ O, then𝑉 adds 𝑜 to the multi-set of all opened
valid preferences (initialized as empty).

(4) Finally, she sets the tally result T as the multi-set of all
opened valid preferences.

𝑉 returns (sid,Tally,T) toZ.
■Upon receiving (sid,Verify, T̂) from Z, 𝑉 reads Cl from
Gclock. If Status(Cl, ®𝑡, Tally) = ⊤, she does:

(1) If T = ∅, she computes the tally multiset as if it received
a (sid,Tally) command.

(2) If T̂ = T, she returns (sid,Verify, T̂, 1) toZ. Else, she
returns (sid,Verify, T̂, 0) toZ.

Figure 15: Description of the protocol Π
Felig,Fvm
STE pa-

rameterized by delay_gen, delay_cast, Status in the

(Felig, Fvm,Gclock)-hybrid model.

E.3.2 Security of Π
Felig,Fvm
STE .

Theorem 5.1. The protocol ΠFelig,FvmSTE (SA,V, delay_gen, delay_cast,
Status) described in Figure 15 UC-realizes FSTE (SA,V, delay_gen,
delay_cast, Status) in the (Felig, Fvm,Gclock)-hybrid model.

Proof. For every adversaryA we construct a simulator S such
that every environmentZ cannot distinguish the real from the idea
execution of the protocol. Below follows the description of S.
S initializes as empty the lists of generated credentials 𝐿Selig,

generated ballots 𝐿Sgball, authenticated ballots 𝐿Sauth, cast ballots

𝐿Scast, and operates as follows:
Upon receiving (sid,Corrupt,Vcorr), S forwards the message

to A as if it wasZ. Upon receiving (sid,Corrupt,Vcorr) from A
as if it was Felig, S forwards the same message as if it was from
Z to A. Upon receiving (sid,Corrupt,Vcorr) from A as if it was
Fvm, S forwards the message to FSTE.

Upon receiving (sid, Election_Info,Velig,O, 𝑡cast, 𝑡open) from
FSTE,S sets ®𝑡 ← (𝑡cast, 𝑡open, delay_cast) and vote.par := (Velig,O, ®𝑡)
as voting parameters and sends (sid, Election_Info, vote.par) to
A as if it was Fvm. Upon receiving the permission fromA, S sends
(sid, Setup_Elig,Velig,O, 𝑡cast, 𝑡open) to A as if it was Felig. Upon
receiving (sid, Setup_Elig, GenCred, AuthBallot, VrfyBallot,
UpState, 𝑆𝑡gen) from A then:

(1) It sets reg.par := (Velig,O, ®𝑡, 𝑆𝑡gen) as registration parame-
ters.

(2) It sends (sid, Elig_Par, reg.par) to A as if it was Felig on
behalf of every corrupted party toA. IfA returns the token

back for every corrupted party then S sends the message
(sid, Election_Info_OK,Velig, 𝑡cast, 𝑡open) to FSTE.

Upon receiving (sid,Gen_Cred,𝑉 ) from FSTE for 𝑉 ∉ Vcorr, S
does:

(1) It runs (cr, ĉr, aux) ← GenCred(1_ , reg.par). If there are tu-
ples (·, cr, ·, ·, ·) or (·, ·, ĉr, ·, ·) in 𝐿Selig or (cr, ĉr) = ⊥, it sends
(sid, Gen_Cred,𝑉 ,⊥) to FSTE. Else, it adds (𝑉 , cr, ĉr, aux, 1)
to 𝐿Selig.

(2) It sends (sid,Gen_Cred,𝑉 , ĉr) to A as if it was Felig. If A
allows the broadcast then S sends (sid,Gen_Cred,𝑉 , ĉr) on
behalf of every corrupted party as if it was Felig to A. If
A returns the token back for every corrupted party then S
sends (sid,Gen_Cred,𝑉 , ready) to FSTE.

Upon receiving (sid,Gen_Ballot, tag,Cl, 0 |𝑜 |) from FSTE, S in-
serts the tuple

(
𝑉 ,Null, 𝑜, tag,Cl, 1

)
→ 𝐿Sgball for some𝑉 previously

unused such that there is a tuple (𝑉 , cr, ĉr, aux, 1) in 𝐿Selig, and sends
the message (sid,Gen_Ballot, tag,Cl, 0 |𝑜 |) to A as if it was Fvm.
Upon receiving the token back fromA it returns whatever receives
from A to FSTE.

Upon receiving (sid,Cast_Ballot, 𝑀) from FSTE it does:

(1) It searches for a tuple
(
𝑉 ,𝑀, 𝑜, tag,Cl, 1

)
in 𝐿Sgball. For such a

𝑉 , it picks the tuple (𝑉 , cr, ĉr, aux, 1) from 𝐿Selig and updates
it as (𝑉 , cr, ĉr, aux, 1, used). Observe that, the relationship
between cr and 𝑉 are only known to S.

(2) If 𝑆𝑡fin = 0, then it runs 𝑆𝑡fin ← UpState(𝑆𝑡gen, {ĉr| (·, ·, ĉr, ·, ·) ∈
𝐿Selig}).

(3) It runs 𝜎 ← AuthBallot(𝑣, cr, 𝑆𝑡fin, reg.par, aux). If it holds
that VrfyBallot(𝑣, 𝜎, 𝑆𝑡fin, reg.par, aux) = 0, it sends (sid,
Auth_Ballot,⊥) toFSTE. Else, it adds (𝑉 , 𝑣, cr, 𝜎, 1) to𝐿Sauth.

(4) It sends (sid,Cast_Ballot, (𝑣, ®𝜎 = (cr, 𝜎))) toA as if it was
Fvm.

Upon receiving (sid,Update, {(𝑣 𝑗 , tag𝑗 )}
𝑝 (_)
𝑗=1 ) from A as if it

was Fvm, for all 𝑣 𝑗 ≠ Null, if there is a tuple (·, 𝑣 𝑗 , ·, ·, ·, 1) or if there
are 𝑗, 𝑗∗ ∈ [1, 𝑝 (_)] such that 𝑣 𝑗 = 𝑣 𝑗∗ it sends (sid,Update, {(𝑣 𝑗 ,
tag𝑗 )}

𝑝 (_)
𝑗=1 ,⊥) to A as if it was Fvm. Else, it updates each tuple

(Null, 𝑜 𝑗 , tag𝑗 ,Cl𝑗 , 1) to (𝑣 𝑗 , 𝑜 𝑗 , tag𝑗 ,Cl𝑗 , 1). Then it forwards the
message to FSTE. Upon receiving (sid,Opening,𝑉 ∗, 𝑣) from FSTE, it
sends (sid,Open, 𝑣) toA as if it wasFvm. Upon receiving (sid,Open,
𝑣, 𝑜) from A, it sends (sid,Opening,𝑉 ∗, 𝑣, 𝑜) to FSTE.

Upon receiving (sid,Tally) from FSTE on behalf of 𝑉 ∈ Vcorr it
forwards the message to A as if it was 𝑉 and replies back to FSTE
whatever it receives from A.

Upon receiving (sid, Leakage) fromZ, S forwards the message
to A as if it was Z. Upon receiving (sid, Leakage) from A as if
it was Fvm, it reads the timeCl from Gclock. If Status(Cl, ®𝑡,Cred) =
Status(Cl, ®𝑡,Cast) = Status(Cl, ®𝑡,Open) = ⊥,S sends (sid,Tally)
toFSTE. Upon receiving all pairs (𝑣, 𝑜) such that (𝑉 , 𝑣, 𝑜, tag,Cl∗, 1) ∈
𝐿gball ∧ (𝑉 , 𝑜,Cl′, 1) ∈ 𝐿cast from FSTE where 𝐿gball and 𝐿cast lists
that are maintained in FSTE, it returns them to A as if it was Fvm.

Observe that the distribution of messages in both execution are
exactly the same. This completes the proof.
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□

F THE ANONYMOUS BROADCAST PROTOCOL

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
In Figure 16, we depict the aforementioned stratified mix-net archi-
tecture for the special case where𝑚 = ℓ = 3.

Figure 16: The anonymous broadcast protocol Π
3,3,𝑡,𝐵,𝑝
an.BC over

a 3 × 3 stratified mix-net. The blue, green, and red arrows

illustrate the routing of each of the three message shares.

F.1 Protocol description

The Anonymous BC protocol Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC (P, FBC, FRO).

The hybrid protocol runs over an 𝑚 × ℓ stratified mix-net
with mix servers MX𝑗,𝑘 ∈ MX, 𝑗 ∈ [𝑚], 𝑘 ∈ [ℓ] as described
above. It is parameterized by a public key encryption
scheme ΣPKE = (PKE.Gen, PKE.Enc, PKE.Dec) and Shamir’s
(𝑡,𝑚)-TSS scheme Σtss [62]. Each party 𝑃 initializes a counter
count𝑃 and a flag setup𝑃 as 0. Upon receiving a command
message fromZ and if setup𝑃 = 0, 𝑃 executes the procedure
Setup as described below and then executes the command
message based on her description.

Setup:

– Upon receiving (sid/sid𝐶 ,I, input) from Z, where
I ∈ {Broadcast, Advance_Clock, Read_Clock},
𝑃 sends (sid𝑃,MX, Broadcast, setup) to FBC, where
sid𝑃,MX = (sid, {𝑃} ∪MX).
– Upon receiving (sid𝑃,MX, Broadcast, 𝑃, setup) from FBC
for the first time, the mix serverMX𝑗,𝑘 reads the time Cl from
Gclock and initializes a local time clock variable as Cl𝑗,𝑘 ← Cl.
It also initializes a list of received messages per round, 𝐿 𝑗,𝑘pool
and a list of all received messages 𝐿 𝑗,𝑘rec , as empty. Next, it runs
PKE.Gen(1_) and obtains a pair of a secret and a public key
(sk𝑗,𝑘 , pk𝑗,𝑘 ). Then, it provides all parties with its public key
by sending (sidMX𝑗,𝑘 ,P, Broadcast, (setup, pk𝑗,𝑘 )) to FBC,
where sidMX𝑗,𝑘 ,P = (sid,MX𝑗,𝑘 ∪ P).
– Upon receiving (sidMX𝑗,𝑘 ,P, Broadcast,MX𝑗,𝑘 ,

(setup, pk𝑗,𝑘 )) from FBC, 𝑃∗ stores the pair

(MX𝑗,𝑘 , pk𝑗,𝑘 ). Once she has stored the public
keys from all mix servers, 𝑃∗ sets status𝑃∗ to 1.

Subsequently, 𝑃 executes (sid/sid𝐶 ,I, input) as described
below.
■Upon receiving (sid, Broadcast, 𝑀) she reads the time Cl
from Gclock. If status𝑃 = 1, 𝑃 ∈ P does:

(1) If count𝑃 = 𝐵 or |𝑀 | > 𝑝 (_) or the tuple (Cl, 1) is
recorded, then she ignores the message. Else, she in-
creases count𝑃 by 1 and proceeds as follows.

(2) She pads𝑀 so that |𝑀 | = 𝑝 (_).
(3) She randomly chooses a value 𝑟 from some random-

ness space R and sends (sid,Query, 𝑟 ) to FRO. Upon
receiving (sid, Random_Oracle, 𝑟 , ℎ) fromFRO, where
|ℎ | = 𝑝 (_), she computes the pair (𝑟, ℎ ⊕ 𝑀).

(4) She splits (𝑟, ℎ ⊕ 𝑀) into 𝑚 shares [(𝑟, ℎ ⊕
𝑀)]1, . . . , [(𝑟, ℎ ⊕ 𝑀)]𝑚 .

(5) She randomly chooses tag from a space TAG of expo-
nential size with respect to the security parameter _.

(6) For 𝑗 = 1, . . . ,𝑚, she computes an ℓ-level layered en-
cryption of (tag, [(𝑟, ℎ ⊕ 𝑀)] 𝑗 ) as
𝑐 𝑗 ←PKE.Enc

(
pk𝑗,1, . . .

. . . , (PKE.Enc(pk𝑗,ℓ , (tag, [(𝑟, ℎ ⊕ 𝑀)] 𝑗 )))
)

(4) She stores tag in an, initially empty, list of transmitted
tags 𝐿𝑃send and stores (pk𝑗,1, 𝑐 𝑗 ) in an, initially empty,
list of pending ciphertexts 𝐿𝑃pool.

■Upon receiving (sid𝐶 ,Advance_Clock) from Z, 𝑃 reads
the time Cl from Gclock and records the tuple (Cl, 1).Then she
does:

(1) While 𝐿𝑃pool is not empty,
(a) She picks the first pair (pk𝑗∗,1, 𝑐 𝑗∗ ) in 𝐿𝑃pool.
(b) She sends (sid𝑃,MX, Broadcast,
(transmit, pk𝑗∗,1, 𝑐 𝑗∗ )) to FBC, where sid𝑃,MX =

(sid, {𝑃} ∪MX).
(c) She removes (pk𝑗∗,1, 𝑐 𝑗∗ ) from 𝐿𝑃pool.

(2) She creates as many dummy ciphertexts as to cause
a cover traffic effect, i.e., to broadcast exactly 𝐵 times
during the current round. Namely, for 𝑏 = 1, . . . , 𝐵 −
count𝑃 :

(a) She chooses a random tag𝑏 from space TAG.
(b) She creates the pair (𝑟𝑏 , ℎ𝑏 ⊕ Null) for the special

message ‘Null’ of length 𝑝 (_) via FRO as if it was an
original message.

(c) She splits (𝑟𝑏 , ℎ𝑏 ⊕ Null) into 𝑚 shares [(𝑟𝑏 , ℎ𝑏 ⊕
Null)]1, . . . , [(𝑟𝑏 , ℎ𝑏 ⊕ Null)]𝑚 .

(d) For 𝑗 = 1, . . . ,𝑚:
(i) She computes an ℓ-level layered ciphertext
𝑐𝑏,𝑗 ←PKE.Enc

(
pk𝑗,1, . . . , (PKE.Enc

(pk𝑗,ℓ , (tag𝑏 , [(𝑟𝑏 , ℎ𝑏 ⊕ Null)] 𝑗 )))
)

(ii) She sends (sid𝑃,MX, Broadcast, (transmit, pk𝑗,1,
𝑐𝑏,𝑗 )) to FBC.
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(3) She resets count𝑃 as 0.
(4) She sends (sid𝐶 ,Advance_Clock) to Gclock and com-

pletes her round.
■ Upon receiving either (i)
(sid𝑃,MX, Broadcast, 𝑃, (transmit, pk𝑗,𝑘 , 𝑐

∗
𝑗,𝑘
)) from FBC (if

𝑘 = 1), or (ii) (sidMX, Broadcast,MX𝑗,𝑘−1, (transmit, 𝑐∗
𝑗,𝑘
))

from FBC, where sidMX = (sid,MX) (if 2 ≤ 𝑘 ≤ ℓ), the server
MX𝑗,𝑘 does:

(1) If 𝑐∗
𝑗,𝑘
∈ 𝐿 𝑗,𝑘rec , then it ignores the message. Else, it adds

𝑐∗
𝑗,𝑘

to 𝐿 𝑗,𝑘rec and proceeds as follows.
(2) Consider that the ℓ − (𝑘 − 1)-level layered ciphertext

𝑐∗
𝑗,𝑘

is denoted as

𝑐∗
𝑗,𝑘

:=PKE.Enc
(
pk𝑗,𝑘 , . . .

. . . , (PKE.Enc(pk𝑗,ℓ , (tag∗, [𝐶∗] 𝑗 )))
)
.

MX𝑗,𝑘 decrypts one layer using sk𝑗,𝑘 such that if 𝑘 < ℓ ,
the decryption results in a ℓ −𝑘-level layered ciphertext

𝑐∗
𝑗,𝑘+1 :=PKE.Enc

(
pk𝑗,𝑘+1, . . .

. . . , (PKE.Enc(pk𝑗,ℓ , (tag∗, [𝐶∗] 𝑗 )))
)
,

whereas if 𝑘 = ℓ (exit server), the decryption results in
the plaintext pair (tag∗, [𝐶∗] 𝑗 ).

(3) It reads the time Cl from Gclock.
(4) If Cl = Cl𝑗,𝑘 + 1 (i.e., the beginning of a new round

occurred), then it does:
(a) It parses 𝐿 𝑗,𝑘pool as ⟨𝑅1, . . . , 𝑅 |𝐿 𝑗,𝑘

pool |
⟩, where |𝐿 𝑗,𝑘pool | is

the size of 𝐿 𝑗,𝑘pool.

(b) It performs a random permutation 𝜋 : [|𝐿 𝑗,𝑘pool |] −→

[|𝐿 𝑗,𝑘pool |] on the entries of 𝐿 𝑗,𝑘pool, i.e., it randomly re-

orders 𝐿 𝑗,𝑘pool as ⟨𝑅𝜋 (1) , . . . , 𝑅𝜋 ( |𝐿 𝑗,𝑘

pool |)
⟩.

(c) For ^ = 1, . . . , |𝐿 𝑗,𝑘pool |:
- If 𝑘 < ℓ (no exit point), then MX𝑗,𝑘 sends
(sidMX, Broadcast, (transmit, 𝑅𝜋 (^) )) to FBC,
where 𝑅𝜋 (^) is an ℓ − 𝑘-level layered ciphertext.

- If 𝑘 = ℓ (exit point), then the exit server MX𝑗,ℓ

sends (sidMX𝑗,ℓ ,P, Broadcast, (transmit, 𝑅𝜋 (^) ))
to FBC where sidMX𝑗,ℓ ,P = (sid, {MX𝑗,ℓ } ∪ P) and
𝑅𝜋 (^) is a pair of a tag and the linked share.

(d) It resets 𝐿 𝑗,𝑘pool as empty.
(e) It advances its local time, i.e., it updates Cl𝑗,𝑘 ← Cl.

(5) It adds the decryption of 𝑐∗
𝑗,𝑘

(that is either 𝑐∗
𝑗,𝑘+1, if

𝑘 < ℓ , or (tag∗, [𝑀∗] 𝑗 ), if 𝑘 = ℓ) to 𝐿 𝑗,𝑘pool.

■ Upon receiving (sidMX𝑗,ℓ ,P, Broadcast,MX𝑗,ℓ ,

(transmit, 𝑅)) from FBC, the party 𝑃 ∈ P does:
(1) She parses 𝑅 as (tag, [(𝑟,𝐶)] 𝑗 and checks if a triple
(tag, ·,MX𝑗,ℓ ) is already recorded in 𝐿𝑃rec. If so, she
aborts.

(2) She adds (tag, [(𝑟,𝐶)] 𝑗 ,MX𝑗,ℓ ) to an, initially empty,
list of received messages 𝐿𝑃rec.

(3) She checks if there are at least 𝑡 tuples of the form
(tag, [(𝑟,𝐶)]∗,MX∗) in 𝐿𝑃rec. If so, she reconstructs the
pair (𝑟,𝐶) from these tuples, and removes every mes-
sage (tag, ·, ·) from 𝐿𝑃rec.

(4) She sends (sid,Query, 𝑟 ) to FRO. Upon receiving
(sid, Random_Oracle, ℎ) from FRO, she recovers the
message by computing𝑀 ← ℎ ⊕ 𝐶 and removing the
pads.

(5) If 𝑀 = Null, then she takes no further ac-
tion. Else, if tag ∈ 𝐿𝑃send, then she returns
(sid, Broadcast, 𝑀, sender) to Z. Else, she returns
(sid, Broadcast, 𝑀) toZ.

Figure 17: The anonymous broadcast functionality

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC (P, FBC, FRO) parameterized by themix-net𝑚×ℓ
stratified topology, the corruption threshold 𝑡 < 𝑘 , and

the bound 𝐵.

F.2 Security analysis

.
Theorem 6.1. Let 𝑚, ℓ, 𝑡, 𝐵 be non-negative integers such that

𝑚, ℓ, 𝐵 ≥ 1 and 𝑡 ≤ 𝑚. Let 𝑝 (·) be some polynomial. Let ΣPKE be

a public key encryption scheme that is IND-CPA secure. Then, the

protocol Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC (P, FBC, FRO) described in Figure 17 over ΣPKE UC-
realizes F ℓ,𝐵,𝑝

an.BC (P) in the (FBC, FRO,Gclock)-hybrid model against

all adversaries that (i) are global, (ii) can corrupt parties, and (iii) can

corrupt mix servers in a fail-stop manner, according to the following

restrictions:

(1) For every 𝑗 ∈ [𝑚], there is at least a 𝑘 𝑗 ∈ [ℓ] such that

MX𝑗,𝑘 𝑗
is honest (i.e., in every cascade, not all mix servers are

corrupted).

(2)
��{ 𝑗 | ∃𝑘 such that MX𝑗,𝑘 is corrupted}

�� ≤ 𝑚 − 𝑡 (i.e, there are
at least 𝑡 cascades with no corrupted mix servers)

5
.

(3)
��{ 𝑗 | MX𝑗,ℓ is corrupted}

�� < 𝑡 (i.e., the number of corrupted

exit servers is less than 𝑡 ).

Proof. First, we construct a simulator that successfully emu-
lates an execution of Π𝑚,ℓ,𝑡,𝐵,𝑝

an.BC (P, FBC, FRO) (except from some
negligible probability of failure). Then, we will reduce the proto-
col’s security to the IND-CPA security of the underlying encryption
scheme ΣPKE.
Constructing the simulator S. We define the simulator S that
operates as follows:

- It emulates a real-world execution for A, itself playing the
role of the honest parties and FBC, FRO while acting as a
proxy between A and the environment.

- It normally follows the protocol on behalf any honest mix
server.

5This restriction can be removed if we consider only semi-honest adversaries where
fail-stops do not happen.
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- It manages the following data structures:(i) the list of random
oracle graph pairs 𝐿RO, (ii) the list of activity records 𝐿table,
(iii) the list of pending messages of corrupted parties 𝐿corr,
(iv) the list of allocated messages for honest parties 𝐿hon,
and (v) the list of all pending messages 𝐿pend, all initialized
as empty. Let P \ Pcorr be the set of the (emulated) honest
parties.

- Upon receiving (sid, Setup, 𝑃) from F ℓ,𝐵,𝑝

an.BC, if 𝑃 ∈ P \ Pcorr,
then it initiates the Setup procedure of Π𝑚,ℓ,𝑡,𝐵,𝑝

an.BC by sending
(sid𝑃,MX, Broadcast, 𝑃, setup) to A as if it was FBC. If A
allows completion of Setup, thenS sends (sid, Setup_OK) to
F ℓ,𝐵,𝑝

an.BC, else it sends (sid, Setup_NO) to F
ℓ,𝐵,𝑝

an.BC. If 𝑃 ∈ Pcorr,
then it allows the Setup of F ℓ,𝐵,𝑝

an.BC, only ifA allows the Setup
of the emulated execution via the corrupted party 𝑃 and the
corrupted mix servers.

- The simulator upon receiving a broadcast request fromZ
for a corrupted party 𝑃 it forwards the message to A as
if it was Z. Then, upon receiving the token back from A
it randomly chooses a random tag from TAG, reads the
time Cl from Gclock, records the tuple (tag, 𝑃,Cl) and sends
(sid, Broadcast, tag, 𝑃) to F ℓ,𝐵,𝑝

an.BC. When S receives from
F ℓ,𝐵,𝑝

an.BC a request for the message that corresponds to the
value tag, it forwards it to A as if it was a corrupted mix
server and returns back to F ℓ,𝐵,𝑝

an.BC whatever receives from
A.

- Upon receiving (sid𝐶 ,Advanced_Clock, 𝑃) from Gclock, if
𝑃 ∈ P \ Pcorr, then it reads the time Cl from Gclock and
emulates a transmission carried by 𝑃 at time Cl as follows.
For 𝑏 = 1, . . . , 𝐵:

(1) It chooses a random tag𝑏 from TAG. If tag𝑏 has been
reused in a transmission of a (either honest or corrupted)
party during the period [Cl − ℓ,Cl − 1], then it aborts
and simulations fails. This is because reuse of tags within
this period causes obvious correctness errors during mes-
sage reconstruction. Note that we can allow the reuse of
tags that correspond to messages whose delivery time has
passed without any correctness risks (delivered tagged
shares are removed from the parties’ lists of received mes-
sages).

(2) It randomly chooses a value 𝑟𝑏 from the exponential-sized
domain (query) space and a value 𝐶𝑏 of length 𝑝 (_) from
the exponential-sized image (response) space of FRO. If
there is a pair (𝑟𝑏 , ·) in 𝐿RO, it aborts and simulation fails.
The reason is that the value 𝑟𝑏 should be fresh in order
to be the medium for equivocation, i.e. the “decryption”
of 𝐶𝑏 to some desired message that S will receive at time
Cl + ℓ .Else, it records the pair (𝑟𝑏 , empty) to 𝐿RO.

(3) It splits (𝑟𝑏 ,𝐶𝑏 ) into𝑚 shares [(𝑟𝑏 ,𝐶𝑏 )]1, . . . , [(𝑟𝑏 ,𝐶𝑏 )]𝑚 .
(4) It adds (𝑟𝑏 ,𝐶𝑏 ,Cl + ℓ) to 𝐿table.
(5) For 𝑗 = 1, . . . ,𝑚: it computes an ℓ-level layered encryption,

𝑐𝑏,𝑗 , of (tag𝑏 , [(𝑟𝑏 ,𝐶𝑏 )] 𝑗 ) and sends (sid𝑃,MX, Broadcast,
(transmit, pk𝑗,1, 𝑐𝑏,𝑗 )) to A as if it was FBC.

If A controls the entry server, then S forwards the mes-
sage (sid𝑃,MX, Broadcast, (transmit, pk𝑗,1, 𝑐𝑏,𝑗 )) to A as if
it was the corrupted server that corresponds to the public

key pk𝑗,1 and does whatever A instructs. Note that A can
abort due to fail-stop behavior, so the next mix server will
not receive the corresponding encrypted share. Despite that,
the message can still be retrieved as enough shares are avail-
able based on threat model restriction 𝑖𝑖) in the theorem
statement.
In addition, S keeps track of the message flow in the simu-
lated stratified mix-network and activates A when a mes-
sage reaches a corrupted mix-server and does whatever A
instructs. This is possible because S knows which servers
are corrupted. Again, observe that A can abort but because
of restriction 2), the message will still be retrievable.

- At any moment of the execution, A may submit queries
for the emulated FRO, so S, who programs the RO, should
respond consistently. Upon receiving a query 𝑥 , S reads the
time Cl from Gclock, it responds by checking the following:

(1) If there is a triple (𝑟∗,𝐶∗,Cl∗) ∈ 𝐿table such that (i) 𝑟∗ = 𝑥

and (ii) Cl < Cl∗. If so, then A has managed to guess
(or extract by breaking the underlying crypto) a query
necessary for equivocation before the expected message
delivery time Cl∗, which means that when the parties will
receive the messages at time Cl∗ this tuple cannot be used
for equivocation by S, thus S aborts and simulation fails.

(2) If there is a triple (𝑟∗,𝐶∗,Cl∗) ∈ 𝐿table such that (i) 𝑟∗ = 𝑥

and (ii) Cl ≥ Cl∗, then this means thatA makes the query
after the expected message delivery time, so S can use
this tuple for equivocation, as we will explain later.

(3) If there is no triple (𝑥, ·, ·) ∈ 𝐿table, then if there is a pair
(𝑥,𝑦) in𝐿RO, then it respondswith (sid, Random_Oracle,
𝑥,𝑦) to A. Else, it chooses a random 𝑦∗ from the image
space of FRO, adds (𝑥,𝑦∗) to 𝐿RO, and responds with (sid,
Random_Oracle, 𝑥,𝑦∗) to A.

- In case thatS receives a ciphertext instead of a message from
A to be broadcast for a corrupted party 𝑃 , it generates at
random a tag and reads the timeCl fromGclock. Then it sends
(sid, Broadcast, tag, 𝑃) to F ℓ,𝐵,𝑝

an.BC. When the functionality
requests the actual message from S when the time has come,
S either reconstructs the message or requests the message
from A and returns to F ℓ,𝐵,𝑝

an.BC whatever it receives.
- Upon receiving a sequence ofmessages (sid, Broadcast, 𝑀1),
. . . , (sid, Broadcast, 𝑀𝑁Cl ) from F

ℓ,𝐵,𝑝

an.BC, it reads the time
Cl from Gclock and creates a random permutation of the mes-
sages that will be assigned to honest senders by running the
procedure below:

Allocation(P \ Pcorr, 𝐵, 𝐿corr, (𝑀1, . . . , 𝑀𝑁Cl ),Cl)
(1) Set 𝐿pend ←

(
(𝑀1,Cl) . . . , (𝑀𝑁Cl ,Cl)

)
.

(2) While 𝐿corr does not contain any (·,Cl) entry:
(a) Pick the first message (𝑀∗,Cl) in 𝐿corr. This refers to a

message 𝑀∗ that was transmitted ℓ clock ticks earlier
by some corrupted party.

(b) Find the first 𝑗∗ s.t. (𝑀𝑗∗ ,Cl) = (𝑀∗,Cl). Such occur-
rence is guaranteed since F ℓ,𝐵,𝑝

an.BC broadcasts all mes-
sages from corrupted parties when instructed by S.

(c) Remove (𝑀∗,Cl) from 𝐿corr and (𝑀𝑗∗ ,Cl) from 𝐿pend.
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(3) Apply padding so that all messages in 𝐿pend are of length
𝑝 (_).

(4) Repeatedly insert ‘Null’ messages to 𝐿pend until the list
contains exactly |P \ Pcorr | · 𝐵 entries.

(5) Randomly permute the |P \ Pcorr | · 𝐵 entries in 𝐿pend.
(6) Set 𝐿hon ← 𝐿pend.

- It remains to explain how S handles RO queries that A
makes after expected delivery time has passed and are nec-
essary for message recovery (e.g., on behalf of a corrupted
recipient that has reconstructed the equivocation pairs from
the corresponding shares). Upon receiving a query 𝑥 fromA,
if there is a triple (𝑟∗,𝐶∗,Cl∗) ∈ 𝐿table such that (i) 𝑟∗ = 𝑥 and
(ii) Cl ≥ Cl∗, then S picks the first pair formed as (𝑀∗,Cl∗)
in 𝐿hon. The existence of such pair follows by the facts that
(i) after the Allocation procedure for time Cl∗ is completed,
there are exactly |P \ Pcorr | · 𝐵 pairs (·,Cl∗) ∈ 𝐿hon, and (ii)
ℓ clock ticks earlier, exactly 𝐵 triples (·, ·,Cl∗) ∈ 𝐿table were
created by S during transmission emulation of every party
or every party 𝑃 ∈ P \ Pcorr. By picking (𝑀∗,Cl∗), S maps
(𝑟∗,𝐶∗) to𝑀∗ in a 1-1 manner6. Next, S replies to the query
𝑟∗ = 𝑥 by using equivocation as follows: if a pair (𝑟∗, 𝑦) is
already recorded in 𝐿RO, then it responds with 𝑦, else it com-
putes ℎ∗ ← 𝐶∗ ⊕ 𝑀∗ (observe that since 𝐶∗ is random, ℎ∗
is also random), adds (𝑟∗, ℎ∗) to 𝐿RO and responds with ℎ∗.
This ensures thatA will recover the message𝑀∗ ← ℎ∗ ⊕𝐶∗,
as desired.

Analysis of the simulation. We observe that for every message 𝑀 ,
the distribution

{𝑟 $← RO_Domain;ℎ
$← RO_Range : (𝑟, ℎ ⊕ 𝑀)}

is identical to the distribution

{𝑟 $← RO_Domain;𝐶
$← RO_Range : (𝑟,𝐶)} .

Therefore, the equivocation that S applies by programming the
RO allows for the perfect emulation of the honest transmission of
any message𝑀 , unless the following happens: S aborts because at
some point of the emulated transmission for an honesty party it
chooses a randomness that is already in 𝐿RO, or it chooses tag that
was reused up to ℓ rounds earlier.

In addition, another possible deviation of Π𝑚,ℓ,𝑡,𝐵,𝑝

an.BC from the
perfect correctness that F ℓ,𝐵,𝑝

an.BC offers, is the event where a mix
server discards a ciphertext that has received in the past, although
it happened that this new ciphertext was honestly generated using
the same randomness.

We denote the union of the above events by Fail_Repeat. Clearly,
since the randomness and tag domains are of exponential size and
the execution runs in polynomial time, we have that Pr[Fail_Repeat] =
negl(_).

By threat model restriction (i) in the theorem statement, the
existence of at least one honest mix server, hence of at least one per-
mutation unknown to the adversary A, in each of the𝑚 cascades,

6Note that, implicitly by the description of the Allocation procedure, if (𝑟 ∗,𝐶∗) was
created during the transmission of some party 𝑃∗ , then 𝑃∗ has been randomly assigned
as presumed sender of𝑀∗ among the honest parties.

guarantees the unlinkability of all the shares of each transmitted
value. The latter along with the random allocation of honest trans-
mitted messages during the Allocation process, ensures that the
said messages are broadcast in random order, just as in F ℓ,𝐵,𝑝

an.BC.
By threat model restriction (ii),the adversary A, even when it

acts in fail-stop manner, cannot block the routing of at least 𝑡 shares
per message. Thus, message reconstruction is always feasible on
the recipient side.

It remains to show that simulation will not fail because A man-
aged to query the RO for some randomness by recovering a trans-
mitted value before all its tagged shares are eventually broadcast
to the parties. Unless A simply guesses the randomness correctly
(which happens only with negl(_) probability), the latter could be
achieved ifA managed to break the underlying crypto. However, by
the information theoretic security of Shamir’s TSS and threat model
restriction (iii), the shares that the corrupted exit servers obtain do
not suffice for reconstructing the secret. Therefore, A’s strategy
should rely on breaking the security of the underlying encryption
scheme, ΣPKE. In the following, we show that with overwhelming
probability this cannot happen, given that ΣPKE is IND-CPA secure.

Reduction to IND-CPA security. We will reduce the security of

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC to the security of a public key encryption scheme denoted
by Σ(𝑧)PKE that naturally derives from 𝑧 “iterations” of ΣPKE. Formally,
for some 𝑧 that is polynomial in _, Σ(𝑧)PKE is defined as follows:

• PKE.Gen(𝑧) (1_): run PKE.Gen(1_) 𝑧 times and obtain the
pairs of keys (sk1, pk1), . . . , (sk𝑧 , pk𝑧). Set sk := (sk1, . . . , sk𝑧)
and pk := (pk1, . . . , pk𝑧).
• PKE.Enc(𝑧) (pk, 𝑀 := (𝑀1, . . . , 𝑀𝑧)): for 𝑗 ∈ [𝑧], run 𝑐 𝑗 ←
PKE.Enc(pk𝑗 , 𝑀𝑗 ) and set 𝑐 := (𝑐1, . . . , 𝑐𝑧).
• PKE.Dec(𝑧) (sk, 𝑐 := (𝑐1, . . . , 𝑐𝑧)): for 𝑗 ∈ [𝑧], run 𝑀𝑗 ←
PKE.Dec(sk𝑗 , 𝑐 𝑗 ) and set𝑀 := (𝑀1, . . . , 𝑀𝑧).

By using a standard hybrid argument, in the following claim, we
show that the security of ΣPKE suffices for the security of Σ(𝑧)PKE.

Claim F.0.1. Let 𝑧 be polynomial in _. If ΣPKE is IND-CPA secure,

then Σ
(𝑧)
PKE is also IND-CPA secure.

Proof of Claim F.0.1. We use a contradiction argument for the
proof. Let us assume that B be an IND-CPA adversary against
Σ
(𝑧)
PKE that wins with probability 1

2 + 𝛽 (_). For 𝑗∗ = 1, . . . , 𝑧, we
construct an IND-CPA adversary B𝑗∗ against ΣPKE that emulates
the IND-CPA game against Σ(𝑧)PKE as follows:

(1) On input a public key pk, for 𝑗 ∈ [𝑧]\{ 𝑗∗}, it runs (sk𝑗 , pk𝑗 ) ←
PKE.Gen(𝑧) (1_). Then, it sets pk𝑗∗ ← pk. It providesB with
pk := (pk1, . . . , pk𝑧).

(2) It receives two distinct message vectors (𝑀0
1 , . . . , 𝑀

0
𝑧 ), (𝑀1

1 ,

. . . , 𝑀1
𝑧 ) from B.

(3) For 𝑗 < 𝑗∗, it creates an encryption of𝑀1
𝑗
under pk𝑗 , 𝑐1

𝑗
.

(4) For 𝑗 = 𝑗∗, it sends (𝑀0
𝑗∗ , 𝑀

1
𝑗∗ ) to the IND-CPA challenger

and receives an encryption, 𝑐𝑏
𝑗∗ , of𝑀

𝑏
𝑗∗ .

(5) For 𝑗 > 𝑗∗, it creates an encryption of𝑀0
𝑗
under pk𝑗 , 𝑐0

𝑗
.

(6) It replies to B with (𝑐1
1, . . . , 𝑐

1
𝑗∗−1, 𝑐

𝑏
𝑗∗ , 𝑐

0
𝑗∗+1, . . . , 𝑐

0
𝑧).
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(7) It returns whatever B outputs.
By the description of B𝑗∗ , the following hold:

Pr[B1 (pk) → 1|𝑏 = 0] = Pr[B(pk) → 1|𝑏 = 0]
Pr[B𝑧 (pk) → 1|𝑏 = 1] = Pr[B(pk) → 1|𝑏 = 1]

Pr[B𝑗∗ (pk) → 1|𝑏 = 1] = Pr[B𝑗∗+1 (pk) → 1|𝑏 = 0]

Thus, by the assumption for B, we have that
1
2
+ 𝛽 (_) =

= Pr[B(pk) → 1 ∧ 𝑏 = 1] + Pr[B(pk) → 0 ∧ 𝑏 = 0] ≤
≤
�� Pr[B(pk) → 1 ∧ 𝑏 = 1] + Pr[B(pk) → 0 ∧ 𝑏 = 0]

�� =
=

1
2
·
�� Pr[B(pk) → 1|𝑏 = 1] + Pr[B(pk) → 0|𝑏 = 0]

�� =
=

1
2
·
�� Pr[B(pk) → 1|𝑏 = 1] + 1 − Pr[B(pk) → 1|𝑏 = 0]

�� ≤
≤ 1

2
+ 1

2
·
�� Pr[B(pk) → 1|𝑏 = 1] − Pr[B(pk) → 1|𝑏 = 0]

�� =
=

1
2
+ 1

2
·
�� Pr[B𝑧 (pk) → 1|𝑏 = 1] − Pr[B1 (pk) → 1|𝑏 = 0]

��.
Therefore, we get that

2𝛽 (_) ≤
≤
�� Pr[B𝑧 (pk) → 1|𝑏 = 1] − Pr[B1 (pk) → 1|𝑏 = 0]

�� =
=
�� Pr[B𝑧 (pk) → 1|𝑏 = 1] −

𝑧∑︁
𝑗∗=2

Pr[B𝑗∗ (pk) → 1|𝑏 = 0]+

+
𝑧∑︁

𝑗∗=2
Pr[B𝑗∗ (pk) → 1|𝑏 = 0] − Pr[B1 (pk) → 1|𝑏 = 0]

�� =
=
�� Pr[B𝑧 (pk) → 1|𝑏 = 1] −

𝑧∑︁
𝑗∗=2

Pr[B𝑗∗ (pk) → 1|𝑏 = 0]+

+
𝑧−1∑︁
𝑗∗=1

Pr[B𝑗∗ (pk) → 1|𝑏 = 1] − Pr[B1 (pk) → 1|𝑏 = 0]
�� =

=
�� Pr[B𝑧 (pk) → 1|𝑏 = 1] − Pr[B𝑧 (pk) → 1|𝑏 = 0]−

−
𝑧−1∑︁
𝑗∗=2

Pr[B𝑗∗ (pk) → 1|𝑏 = 0] +
𝑧−1∑︁
𝑗∗=2

Pr[B𝑗∗ (pk) → 1|𝑏 = 0]+

+ Pr[B1 (pk) → 1|𝑏 = 1] − Pr[B1 (pk) → 1|𝑏 = 0]
�� =

=

��� 𝑧∑︁
𝑗∗=1
(Pr[B𝑗∗ (pk) → 1|𝑏 = 1] − Pr[B𝑗∗ (pk) → 1|𝑏 = 0])

��� ≤
≤

𝑧∑︁
𝑗∗=1

��� Pr[B𝑗∗ (pk) → 1|𝑏 = 1] − Pr[B𝑗∗ (pk) → 1|𝑏 = 0]
���.

By the above inequality and an averaging argument, we get that
there exists a 𝑗∗0 ∈ 𝑧 such that��� Pr[B𝑗∗0

(pk) → 1|𝑏 = 1] − Pr[B𝑗∗0
(pk) → 1|𝑏 = 0]

��� ≥ 2𝛽 (_)
𝑧

.

We study the two following cases:
If it holds that

Pr[B𝑗∗0
(pk) → 1|𝑏 = 1] − Pr[B𝑗∗0

(pk) → 1|𝑏 = 0] ≥ 2𝛽 (_)
𝑧

,

then this directly implies that B𝑗∗0
wins the IND-CPA security game

with probability at least 1
2 +

𝛽 (_)
𝑧 .

Else, if it holds that

Pr[B𝑗∗0
(pk) → 1|𝑏 = 0] − Pr[B𝑗∗0

(pk) → 1|𝑏 = 1] ≥ 2𝛽 (_)
𝑧
⇔

⇔ Pr[B𝑗∗0
(pk) → 0|𝑏 = 1] − Pr[B𝑗∗0

(pk) → 0|𝑏 = 0] ≥ 2𝛽 (_)
𝑧

,

then the adversary B̄𝑗∗0
, that operates exactly likeB𝑗∗0

but flipsB𝑗∗0
’s

output bit, wins the IND-CPA security game with probability at
least 1

2 +
𝛽 (_)
𝑧 .

In any case, if 𝛽 (·) is a non-negligible function, then we devise
an adversary that wins the IND-CPA game against ΣPKE with non-
negligible distinguishing advantage 𝛽 (_)

𝑧 , which contradicts to the
security of ΣPKE.

(End of Proof of Claim F.0.1) ⊣

Reduction to the IND-CPA security of Σ
(𝑚−𝑡 )
PKE .We assume for the sake

of contradiction (cf. Definition A.1), that there is an adversary A∗
under the mix server corruption restrictions of the theorem state-
ment, and an environmentZ∗ such that for some non-negligible
function 𝛼 (·), it holds that��� Pr

[
EXEC

𝐹
ℓ,𝐵,𝑝

an.BC
Z∗,S (_) = 1

]
−

− Pr
[
EXEC

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
Z∗,A∗ (_) = 1

] ��� ≥ 𝛼 (_).
(1)

Let𝑇 ∗ (_), or simply𝑇 ∗, be the running time ofZ∗. LetMX∗exit.corr
be the set of exit mix servers thatA∗ corrupts. Let 𝑡 = |MX∗exit.corr |,
where 𝑡 < 𝑡 . For notation simplicity assume that MX∗exit.corr =

{MX1,ℓ , . . . ,MX𝑡,ℓ }. We construct a sequence of IND-CPA adver-

saries D1, . . . ,D𝑇 ∗ against Σ
(𝑚−𝑡 )
PKE , where D𝜏 operates as follows:

- On input pk := (pk1, . . . , pk𝑚−𝑡 ) ← PKE.Gen(𝑚−𝑡 ) (1_),
it emulates an execution of Π𝑚,ℓ,𝑡,𝐵,𝑝

an.BC (P, FBC, FRO) in the
presence of A∗ andZ∗, by assigning pk1, . . . , pk𝑚−𝑡 as the
public key of the honest exit serverMX𝑡+1,ℓ , . . . ,MX𝑚,ℓ , re-
spectively. If A∗ disallows the completion of the Setup pro-
cedure, then D𝜏 stops the emulation and returns a random
bit to the IND-CPA challenger. Otherwise, for any honest
mix server that is not an exit server, it normally creates a
pair of a public and a secret key by running PKE.Gen(1_).

- For some execution, let𝑀1, . . . , 𝑀𝑇 ′ be the number of mes-
sages that are broadcast by the honest parties (including
‘Null’ messages), as scheduled by Z∗. Here, 𝑇 ′ is upper
bounded by𝑇 ∗𝐵 (this bound is reached in caseZ∗ always in-
structs parties to Advance_Clock). If𝑇 ′ = 0, thenD𝜏 stops
the emulation and returns a random bit to the IND-CPA
challenger. If 𝑇 ′ ≥ 1, then it emulates honest transmission
of𝑀𝑤 ,𝑤 = 1, . . . ,𝑇 ′ as follows:
∗ If 𝑤 < 𝜏 , then it transmits 𝑀𝑤 as the instructed honest
party would do by following the steps in Π

𝑚,ℓ,𝑡,𝐵,𝑝

an.BC .
∗ If𝑤 = 𝜏 , then it does:
(1) Like in Π

𝑚,ℓ,𝑡,𝐵,𝑝

an.BC , it (i) chooses a random value 𝑟0
𝜏 and

(ii) programs FRO by choosing a random value ℎ𝜏 and
recording the pair (𝑟1

𝜏 , ℎ𝜏 ).
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(2) It normally creates the shares of (𝑟1
𝜏 , ℎ𝜏 ⊕𝑀𝜏 ) according

to Shamir’s secret sharing scheme; namely, it chooses
a random 𝑡 − 1 degree polynomial 𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 +
· · · +𝑎𝑡−1𝑥𝑡−1 and sets each share as [(𝑟1

𝜏 , ℎ𝜏 ⊕𝑀𝜏 )] 𝑗 =
( 𝑗, 𝑓 ( 𝑗)), 𝑗 ∈ [𝑚]. Here, 𝑓 (0) = 𝑎0 encodes (𝑟1

𝜏 , ℎ𝜏 ⊕
𝑀𝜏 ).

(3) It creates the shares of another random pair (𝑟0
𝜏 ,𝐶𝜏 )

in a consistent way w.r.t. the shares that the corrupted
exit servers will receive. For 𝑗 = 𝑡 + 1, . . . , 𝑡 , it chooses
some random image values 𝑦 𝑗 . Then, it computes the
unique polynomial 𝑓 (𝑥) = 𝑎0 +𝑎1𝑥 + · · · +𝑎𝑡−1𝑥𝑡−1 that
is determined by the 𝑡 points (1, 𝑓 (1)), . . . , (𝑡, 𝑓 (𝑡)), (𝑡 +
1, 𝑦𝑡+1), . . . , (𝑡, 𝑦𝑡 ) via Lagrange interpolation. If the de-
gree of 𝑓 (𝑥) is lower than 𝑡 − 1, then it stops the emula-
tion and returns a random bit to the mIND-CPA chal-
lenger. Otherwise, it computes the points (𝑡 + 1, 𝑓 (𝑡 +
1)), . . . , (𝑚, 𝑓 (𝑚)). It sets as (𝑟0

𝜏 ,𝐶𝜏 ) the value that 𝑎0
encodes. The𝑚 shares of (𝑟0

𝜏 ,𝐶𝜏 ) are formed as:

[(𝑟0
𝜏 ,𝐶𝜏 )] 𝑗 =

{
( 𝑗, 𝑓 ( 𝑗)), if 1 ≤ 𝑗 ≤ 𝑡

( 𝑗, 𝑓 ( 𝑗)), if 𝑡 < 𝑗 ≤ 𝑚
(4) It chooses a random tag tag𝜏 .
(5) It sends

(
(tag𝜏 , [(𝑟0

𝜏 ,𝐶𝜏 )]𝑡+1), . . . , (tag𝜏 , [(𝑟0
𝜏 ,𝐶𝜏 )]𝑚)

)
and

(
(tag𝜏 , [(𝑟1

𝜏 , ℎ𝜏⊕𝑀𝜏 )]𝑡+1), . . . , (tag𝜏 , [(𝑟1
𝜏 , ℎ𝜏⊕𝑀𝜏 )]𝑚)

)
as challenge lists of messages to the mIND-CPA chal-
lenger and receives a list of ciphertexts 𝑐𝑏

𝑡+1, . . . , 𝑐
𝑏
𝑚 .

(6) It creates ℓ-level layer encryptions 𝑐1, . . . , 𝑐𝑡 for the
tagged shares (tag𝜏 , (1, 𝑓 (1)), . . . , (tag𝜏 , (𝑡, 𝑓 (𝑡)) (com-
mon for (𝑟0

𝜏 ,𝐶𝜏 ) and (𝑟1
𝜏 , ℎ𝜏 ⊕𝑀𝜏 )), respectively. These

encryptions are intended for the corrupted exit servers
MX1,ℓ , . . . ,MX𝑡,ℓ .

(7) It creates ℓ-level layer encryptions 𝑐𝑡+1, . . . , 𝑐𝑚 that cor-
respond to 𝑐𝑏

𝑡+1, . . . , 𝑐
𝑏
𝑚 (i.e., it adds (ℓ − 1 more layers

per ciphertext). These encryptions are intended for the
honest exit serversMX𝑡+1,ℓ , . . . ,MX𝑚,ℓ with public keys
pk1, . . . , pk𝑚−𝑡 .

(8) It normally transmits ((pk1,1, 𝑐1), . . . , (pk1,𝑚, 𝑐𝑚)) to
the mix servers.

(9) When the honest exit server MX𝑗,ℓ receives 𝑐𝑏𝑗 (recall
that D𝜏 cannot decrypt this ciphertext in the emula-
tion), it always broadcasts (tag𝜏 , [(𝑟1

𝜏 , ℎ𝜏 ⊕ 𝑀𝜏 )] 𝑗 ) to
the parties.

∗ If𝑤 > 𝜏 , then it acts like S; namely, it (i) chooses random
values 𝑟𝑤 ,𝐶𝑤 ; (ii) splits (𝑟𝑤 ,𝐶𝑤) into𝑚 shares [(𝑟𝑤 ,𝐶𝑤)]1,
. . . , [(𝑟𝑤 ,𝐶𝑤)]𝑚 ; (iii) transmits the shares associated with
a random tag tag𝑤 . During the execution, it responds to
A∗’s query 𝑟𝑤 to FRO as if it was S in order to equivocate
for the message𝑀𝑤 when message delivery comes.

- Like S, if at any point of the execution it chooses a random
value 𝑟𝑤 multiple times, then it stops emulation and returns
a random bit to the IND-CPA challenger.

- It responds to the IND-CPA challenger with whatever Z∗
returns.

In the description of D𝜏 , emulation may stop if A∗ does not
even allow the beginning of the execution (completion of the Setup
procedure fails) or if Z∗ does not request the broadcast of any

messages. Let Abstain denote the event that any of the above two
events happen. Clearly, it holds that

��� Pr
[
EXEC

𝐹
ℓ,𝐵,𝑝

an.BC
Z∗,S (_) = 1

��Abstain]−
− Pr

[
EXEC

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
Z∗,A∗ (_) = 1

��Abstain] ��� = 0,

i.e., Z∗ has no distinguishing advantage when Abstain happens.
Assuming that Eq. (1) holds and w.l.o.g., we may assume that
Pr[Abstain] = 0, namely, the execution under A∗,Z∗ is never
trivial.

Next, we analyze the case where 𝑤 = 𝜏 . By the information
theoretic security of the (𝑡,𝑚)-threshold secret sharing scheme, we
have that the 𝑡 < 𝑡 common shares (1, 𝑓 (1)), . . . , (𝑡, 𝑓 (𝑡)) do not
reveal any information about the values (𝑟0

𝜏 ,𝐶𝜏 ) and (𝑟1
𝜏 , ℎ𝜏 ⊕ 𝑀𝜏 ).

In addition, by choosing 𝑡 − 𝑡 random points (𝑡 + 1, 𝑦𝑡+1), . . . , (𝑡, 𝑦𝑡 )
for the generation of 𝑓 (𝑥), we have that 𝑓 (0) = 𝑎0 is random
so the pair (𝑟0

𝜏 ,𝐶𝜏 ) that 𝑎0 encodes is also random. As a result,
the tagged shares (tag𝜏 , [(𝑟1

𝜏 , ℎ𝜏 ⊕ 𝑀𝜏 )]𝑡+1), . . . , (tag𝜏 , [(𝑟1
𝜏 , ℎ𝜏 ⊕

𝑀𝜏 )]𝑚) broadcast by the exit servers follow the same distribution
as the tagged shares (tag𝜏 , [(𝑟0

𝜏 ,𝐶𝜏 )]𝑡+1), . . . , (tag𝜏 , [(𝑟0
𝜏 ,𝐶𝜏 )]𝑚).

Observe that the transmission schedule in the emulation of D𝜏

given that the IND-CPA challenge bit 𝑏 = 1, is similar to the one of
D𝜏+1 given 𝑏 = 0, with the following exception: for𝑤 = 𝜏 +1,D𝜏 fi-
nally broadcasts (tag𝜏+1, [(𝑟𝜏+1,𝐶𝜏+1)]1), . . . , (tag𝜏+1, [(𝑟𝜏+1,𝐶𝜏+1)]𝑚)
while D𝜏+1 finally broadcasts (tag′

𝜏+1, [(𝑟
1
𝜏+1, ℎ𝜏+1 ⊕𝑀𝜏+1)]1), . . . ,

(tag′
𝜏+1, [(𝑟

1
𝜏+1, ℎ𝜏+1⊕𝑀𝜏+1)]𝑚). Since these twomessage sequences

follow the same distribution, we get that unless emulation stops
(either for the same reasons that S fails or because a polynomial
𝑓 (𝑥) of degree less than 𝑡 − 1 was randomly chosen during the se-
cret sharing process), the two algorithms behave similarly. Clearly,
the probability that emulation stops is negl(_), so it holds that for
some negligible function 𝛿𝜏 (·):�� Pr[D𝜏 (pk) → 1|𝑏 = 1]−

− Pr[D𝜏+1 (pk) → 1|𝑏 = 0]
�� ≤ 𝛿𝜏 (_) .

(2)

Following the same reasoning as above, we can deduce that the
behavior of D1 given 𝑏 = 0 is similar to the one of S with the
difference that D1 finally broadcasts (tag1, [(𝑟1

𝑞, ℎ1 ⊕ 𝑀1)]1), . . . ,
(tag1, [(𝑟1

1 , ℎ1 ⊕ 𝑀1)]𝑚) instead of the tagged shares of a random
pair (𝑟,𝐶). So, we get that for some negligible function 𝛿0 (·):��� Pr

[
EXEC

𝐹
ℓ,𝐵,𝑝

an.BC
Z∗,S (_) = 1

]
−

− Pr[D1 (pk) → 1|𝑏 = 0]
��� ≤ 𝛿0 (_).

(3)

Besides, by the description of D𝑇 ′ , we directly get that

��� Pr
[
EXEC

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
Z∗,A∗ (_) = 1

]
−

− Pr[D𝑇 ′ (pk) → 1|𝑏 = 1]
��� = 0.

(4)
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By Eq. (1), (2), (3), and (4), we get that
𝛼 (_) ≤

≤
��� Pr

[
EXEC

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
Z∗,A∗ (_) = 1

]
− Pr

[
EXEC

𝐹
ℓ,𝐵,𝑝

an.BC
Z∗,S (_) = 1

] ��� ≤
≤
��� Pr

[
EXEC

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
Z∗,A∗ (_) = 1

]
−

𝑇 ′∑︁
𝜏=1

Pr[D𝜏 (pk) → 1|𝑏 = 1]+

+
𝑇 ′∑︁
𝜏=1

Pr[D𝜏 (pk) → 1|𝑏 = 0] − Pr
[
EXEC

𝐹
ℓ,𝐵,𝑝

an.BC
Z∗,S (_) = 1

] ���+
+
��� 𝑇 ′∑︁
𝜏=1

Pr
[

Pr[D𝜏 (pk) → 1|𝑏 = 1] −
𝑇 ′∑︁
𝜏=1

Pr[D𝜏 (pk) → 1|𝑏 = 0]
��� ≤

≤
��� Pr

[
EXEC

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
Z∗,A∗ (_) = 1

]
− Pr[D𝑇 ′ (pk) → 1|𝑏 = 1]−

−
𝑇 ′−1∑︁
𝜏=1

Pr[D𝜏 (pk) → 1|𝑏 = 1] +
𝑇 ′∑︁
𝜏=2

Pr[D𝜏 (pk) → 1|𝑏 = 0]+

+ Pr[D1 (pk) → 1|𝑏 = 0] − Pr
[
EXEC

𝐹
ℓ,𝐵,𝑝

an.BC
Z∗,S (_) = 1

] ���+
+

𝑇 ′∑︁
𝜏=1

��� Pr
[

Pr[D𝜏 (pk) → 1|𝑏 = 1] − Pr[D𝜏 (pk) → 1|𝑏 = 0]
��� ≤

≤
��� Pr

[
EXEC

Π
𝑚,ℓ,𝑡,𝐵,𝑝

an.BC
Z∗,A∗ (_) = 1

]
− Pr[D𝑇 ′ (pk) → 1|𝑏 = 1]

���+
+
𝑇 ′−1∑︁
𝜏=1

��� Pr[D𝜏 (pk) → 1|𝑏 = 1] − Pr[D𝜏+1 (pk) → 1|𝑏 = 0]
���+

+
��� Pr[D1 (pk) → 1|𝑏 = 0] − Pr

[
EXEC

𝐹
ℓ,𝐵,𝑝

an.BC
Z∗,S (_) = 1

] ���+
+

𝑇 ′∑︁
𝜏=1

��� Pr
[

Pr[D𝜏 (pk) → 1|𝑏 = 1] − Pr[D𝜏 (pk) → 1|𝑏 = 0]
��� ≤

≤0 +
𝑇 ′−1∑︁
𝜏=1

𝛿𝜏 (_) + 𝛿0 (_)+

+
𝑇 ′∑︁
𝜏=1

��� Pr
[

Pr[D𝜏 (pk) → 1|𝑏 = 1] − Pr[D𝜏 (pk) → 1|𝑏 = 0]
��� =

=

𝑇 ′−1∑︁
𝜏=0

𝛿𝜏 (_)+

+
𝑇 ′∑︁
𝜏=1

��� Pr
[

Pr[D𝜏 (pk) → 1|𝑏 = 1] − Pr[D𝜏 (pk) → 1|𝑏 = 0]
���.

(5)

Thus, by Eq. (5) and an averaging argument, we have that there is
a 𝜏∗ ∈ [𝑇 ′] such that��� Pr

[
Pr[D𝜏∗ (pk) → 1|𝑏 = 1] − Pr[D𝜏∗ (pk) → 1|𝑏 = 0]

��� ≥
≥
𝛼 (_) −∑𝑇 ′−1

𝜏=0 𝛿𝜏 (_)
𝑇 ′

.

Since 𝛼 (·) is a non-negligible function, 𝛿0 (·), . . . , 𝛿𝑇 ′−1 (·) are neg-
ligible functions, and 𝑇 ′ is polynomial in _, we have that 𝛾 (_) :=
𝛼 (_) −∑𝑇 ′−1

𝜏=0 𝛿𝜏 (_)
𝑇 ′

is a non-negligible function.

We study the two following cases:
If it holds that

Pr
[

Pr[D𝜏∗ (pk) → 1|𝑏 = 1]−
− Pr[D𝜏∗ (pk) → 1|𝑏 = 0] ≥ 𝛾 (_),

then we directly get that D𝜏∗ wins the IND-CPA game against
Σ
(𝑚−𝑡 )
PKE with probability 1

2 +
𝛾 (_)

2 .
Else, if it holds that

Pr
[

Pr[D𝜏∗ (pk) → 1|𝑏 = 0]−
− Pr[D𝜏∗ (pk) → 1|𝑏 = 1] ≥ 𝛾 (_) ⇔

⇔ Pr
[

Pr[D𝜏∗ (pk) → 0|𝑏 = 1]−
− Pr[D𝜏∗ (pk) → 0|𝑏 = 0] ≥ 𝛾 (_),

then the adversary D̄𝜏∗ , that operates exactly like D𝜏∗ , but flips
D𝜏∗ ’s output bit, wins the IND-CPA game against Σ(𝑚−𝑡 )PKE with
probability 1

2 +
𝛾 (_)

2 .
In any case, we can devise an adversary that breaks the IND-CPA

security of Σ(𝑚−𝑡 )PKE . By Claim F.0.1, this contradicts to the IND-CPA
security of ΣPKE. Therefore, Eq. (1) does not hold and the proof is
complete.

□

G ACCUMULATORS

In this section, we present the ideal functionality Facc, the protocol
Πacc that UC realizes it and the proof of realization.

G.1 The ideal functionality Facc
The realization of the E-cclesia family, especially its eligibility
feature, relies on a UC secure accumulator that is additive (i.e., it
supports only addition of elements to the set) and positive (i.e., it
supports membership proofs). In Subsection G.1.1, we present our
ideal accumulator functionality Facc that is in the spirit of [6] ad-
justed to our scenario. In Subsection G.2, we introduce the protocol
Πacc that follows the command interface of Facc. In Subsection G.4,
we prove that Πacc UC-realizes Facc, if the underlying accumulator
scheme of Πacc satisfies the standard correctness and soundness
properties, such as the hash-based scheme in [57]. In addition, the
initialization of the scheme in [57] allows the execution of Πacc
without the involvement of a trusted party such as a CRS.

G.1.1 The ideal functionality Facc. We present the ideal accumu-
lator functionality Facc that is inspired by the accumulator func-
tionality in [6] with some modifications that fit our purposes. Most
importantly, the accumulator’s operations (e.g. addition) are man-
aged by Facc in a way that abstracts a real-world scenario where
these operations are handled by the parties themselves in a local
manner, instead of having an accumulator manager that is in control
of a shared accumulator state.

The functionality Facc initializes a mapping S𝑃 with S𝑃 [0] = ∅
for every honest party 𝑃 , which maps the number of elements in
the multiset or list to the actual multiset or list of the accumulated
elements. In case the quasi-commutativity security property [12]
is captured by Facc then S𝑃 maps elements to a multiset, else it
maps them to a list. We make this distinction clear by indicating
with red the text that corresponds to the version of Facc which

29



captures quasi-commutativity, and with blue the version that does
not capture it.

Moreover, Facc initializes as 0 the counter tP which shows the
total number of the added elements in the accumulated multiset
or list for the party 𝑃 . The counter tP also indicates the number
of operations of that specific time for a given accumulator and
because we use only addition operations it coincides with the to-
tal number of elements in it. It initializes as empty the list 𝐿𝑃state
which contains tuples that include the accumulated value along
with some auxiliary information (depending on the actual construc-
tion of the accumulator), the “update” message that is needed for
updating the witnesses of the older elements for previous accumu-
lated values, the set or list of elements of the previous accumulated
value, the last accumulated value, the corresponding witness of that
value and the total number of elements in the current accumulator.
Moreover, the functionality initializes the shared parameters vector
shared_params, that consists of the accumulation algorithms and a
generated initialization triple, as ∅. Finally, it initializes a set Pready
of parties ready to engage as empty.

The simulator S provides the set of the corrupted parties Pcorr.
Each time the functionality receives a command message from
a corrupted party it handles it to the simulator and waits for its
response and returns whatever receives from S.

Upon receiving Setup from a party 𝑃 , if no algorithms are stored,
Facc requests the accumulation algorithms from S. Specifically, S
returns the following PPT algorithms: (i) Gen, which generates the
accumulator’s parameters; (ii) Update, which updates the accumu-
lated value after the addition of a new element along with other
parameters essential for the other operations; (iii) WitUp, which
updates the witness𝑤𝑥

old for an element 𝑥 to𝑤𝑥
new after the addition

of new elements in the accumulator; and (iv) VerStatus, which ver-
ifies if an element is part of the accumulated value by providing its
witness. The functionality generates the initial accumulated value
along with some auxiliary information by executing the function
Gen. Then, it checks via the function VerStatus that the first accu-
mulation value indeed corresponds to the empty set (if not, it sets
shared_params to ⟨⊥⟩). Here, we capture the sound operation of
the accumulator. It sets shared_params as the vector that contains
the initialization values and the accumulator algorithms Update,
WitUp, and VerStatus. Moreover, when 𝑃 becomes “ready” to en-
gage, if she is honest, then Facc inserts the initial tuple in 𝐿𝑃state.
Here, we capture that each honest party shares the same view on
the initial accumulated value. In addition, the fact that for each
honest party 𝑃 the functionality maintains 𝑃 ’s own list illustrates
that the accumulation operations take place locally rather than in
a shared state setting.

Upon receiving Update along with an accumulated value 𝛼 and
an element 𝑥 from an honest ready party 𝑃 , the functionality checks
if that party has previously recorded such an 𝛼 , which means that
𝑃 has obtained this accumulated value in a past interaction with
Facc as a result of another element addition. Here, we capture the
fact that parties only accumulate elements in known accumulated
values that have been obtained before, rather than arbitrary ones
that the parties do not know their history with respect to their
element representation. Next, Facc: (1) increases the counter tP

by 1, which means that a new element is accumulated; (2) com-
putes the new accumulated value 𝛼tP , an auxiliary message𝑚tP ,
the witness𝑤𝑥

tP that 𝑥 is part of the accumulator 𝛼tP , and an update
message upmsgtP that can be used to update witnesses of other
values after the addition of 𝑥 in the accumulator. Then, it stores the
tuple (𝛼tP ,𝑚tP , 𝑣tP , upmsgtP , S

𝑃 [tP − 1], 𝑥,𝑤𝑥
tP , tP) in 𝐿𝑃state, where

the value S𝑃 [tP − 1] equals with the previous accumulated multi-
set or list without the element 𝑥 , for tracking. Then, it verifies if
the new accumulated state is generated correctly by executing the
algorithm VerStatus. If not, then a correctness error occurred and
Facc returns this error message to 𝑃 . If no error occurred, then it
returns the new accumulated value along with the witness of 𝑥 and
the update message.

Upon receiving the command message Wit_Up from an honest
ready party 𝑃 , the functionality updates an old witness𝑤old for a
given element 𝑥 . Specifically, it accepts the old accumulated value
𝛼old (e.g., before the addition of new elements by the time 𝑥 was
inserted), the target element 𝑥 , its old witness, the target accumula-
tor with which we want to make compatible the old witness, 𝛼new,
and some series of update messages that are the result of the addi-
tion of new elements into the accumulator. Facc returns to 𝑃 the
updated witness for the element 𝑥 for the accumulator 𝛼new after
it checks that the updated witness is compatible with the functions
VerStatus. If it is not, it returns⊥ as correctness property has been
breached.

Finally,upon receiving the verification command Ver_Status,
from an honest party 𝑃 , Facc verifies if an element 𝑥 with witness𝑤
is part of the accumulated value 𝛼 . In case the verification returns
true but the element is not accumulated into a recorded 𝛼 then
a soundness error occurred and the functionality returns an error
message to the party. It is worth mentioning that the functionality
not only searches for the input values into the stored data based
for 𝑃 , but for all honest parties. This means that the for every
honestly generated values no forgery should occur (soundness).
In contrast, the correctness property is only meaningful for each
party individually. This is why the functionality returns a⊥ symbol
in the previous cases by only considering each party’s data base
individually.

Facc (P).

The functionality initializes the following for each party 𝑃 :
the mapping S𝑃 from the number of accumulated elements
to the accumulated𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡\𝑙𝑖𝑠𝑡 as S𝑃 [0] = ∅; a counter tP
that represents the number of elements in the accumulator
as 0; the list of tuples 𝐿𝑃state as empty, where each tuple con-
tains (i) the accumulated value 𝛼tP , (ii) the auxiliary informa-
tion𝑚tP for verifying the membership of an element into the
accumulator, (iii) the update message upmsgtP for updating
older witnesses, (iv) the𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡\𝑙𝑖𝑠𝑡 S𝑃 [tP − 1] of the pre-
vious accumulated value, (v) the new accumulated element
𝑥 , (vi) its related witness 𝑤𝑥 , and (vii) the counter tP. More-
over, the functionality initializes the shared parameters vector
shared_params, that consists of the accumulation algorithms
and a generated initialization triple, as ∅. Finally, it initializes a
set Pready of parties ready to engage as empty. Upon receiving
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(sid,Corrupt, Pcorr) from S, if Pcorr ⊆ P, it fixes Pcorr as the
set of corrupted parties.
■Upon receiving (sid, Setup) from some party 𝑃 ∉ Pcorr or
(sid, Setup, 𝑃) from S for some party 𝑃 ∈ Pcorr, it does:

(1) If shared_params = ∅, it executes the Generation pro-
cedure as follows:

(a) It sends (sid,Gen) to S. Upon receiving
(sid,Gen, Gen, Update, WitUp, VerStatus)
from S, it stores the algorithms
Gen, Update, WitUp, VerStatus.

(b) It computes the initialization triple (𝛼0,𝑚0, 𝑣0) ←
Gen(1_).

(c) If VerStatus(𝛼0,Null, 𝑣0) = 1, it
sets shared_params :=

(
(𝛼0,𝑚0, 𝑣0),

Update, WitUp, VerStatus
)
. Otherwise, it sets

shared_params := ⊥.
(2) If 𝑃 ∉ Pready, it adds 𝑃 to Pready.
(3) If 𝑃 ∉ Pcorr and shared_params :=
⟨(𝛼0,𝑚0, 𝑣0), Update, WitUp, VerStatus⟩, then it
appends the tuple (𝛼0, (𝑚0, 𝑣0),Null,Null,Null,Null, 0)
to 𝐿𝑃state .

(4) It sends (sid, Setup, shared_params) to 𝑃 or S.
■ Upon receiving (sid,Update, 𝛼, 𝑥) from some party 𝑃 ∈
Pready \ Pcorr, if there exists a tuple (𝛼,𝑚tP , upmsgtP , S

𝑃 [tP −
1], 𝑥 ′,𝑤𝑥 ′

tP , tP) or (𝛼, (𝑚0, 𝑣0),Null,Null,Null,Null, 0) in 𝐿𝑃state,
it does:

(1) It increases the counter tP ← tP + 1.
(2) It computes (𝛼tP ,𝑚tP ,𝑤

𝑥
tP , upmsgtP ) ←

Update(𝛼,𝑚tP−1, 𝑥). If tP ≠ 1, it sets
S𝑃 [tP − 1] = S𝑃 [tP − 2] ∪ {𝑥}. It adds
(𝛼tP ,𝑚tP , upmsgtP , S

𝑃 [tP − 1], 𝑥,𝑤𝑥
tP , tP) to 𝐿

𝑃
state.

(3) If VerStatus(𝛼tP , 𝑥,𝑤𝑥
tP ) ≠ 1, it returns

(sid,Update, 𝛼, 𝑥,⊥) to 𝑃 .
(4) If VerStatus(𝛼tP , 𝑥,𝑤𝑥

tP ) = 1, it returns
(sid,Update, 𝛼, 𝑥, 𝛼tP ,𝑤𝑥

tP , upmsgtP ) to 𝑃 .
■ Upon receiving (sid,Wit_Up, 𝛼old, 𝛼new, 𝑥,𝑤old,

(upmsgold+1, . . . , upmsgnew)) from party 𝑃 ∈ Pready \ Pcorr,
if there exist tuples {(𝛼old,𝑚old, upmsgold, S

𝑃 [old −
1], 𝑥,𝑤old, old), · · · , (𝛼new,𝑚new, upmsgnew, S

𝑃 [new −
1], 𝑥new,𝑤new, new)} in 𝐿𝑃state with new > old such that
𝑥 ∈ S𝑃 [old − 1] ∩ · · · ∩ S𝑃 [new − 1], it does:

(1) It computes 𝑤new ←
WitUp(𝑥,𝑤old, (upmsgold+1, . . . , upmsgnew)).

(2) If VerStatus(𝛼new, 𝑥,𝑤new) ≠ 1, it returns
(sid,WitUp, 𝛼old, 𝛼new, 𝑥,𝑤old, (upmsgold+1, . . . ,
upmsgnew),⊥) to 𝑃 .

(3) If VerStatus(𝛼new, 𝑥,𝑤new) = 1, it returns
(sid,Wit_Up, 𝛼old, 𝛼new, 𝑥,𝑤old, (upmsgold+1, . . . ,
upmsgnew),𝑤new) to 𝑃 .

■ Upon receiving (sid,Ver_Status, 𝛼, VerStatus′,
𝑥,𝑤) from party 𝑃 ∈ Pready \ Pcorr or
(sid,Ver_Status, 𝛼, VerStatus′, 𝑥,𝑤, 𝑃) from S for some
party 𝑃 ∈ Pcorr, it does:

(1) If VerStatus′ = VerStatus and for some
largest integer 𝑡𝑃∗ , there exists a tuple
(𝛼,𝑚𝑡𝑃∗ , upmsg𝑡𝑃∗ , S

𝑃∗ [𝑡𝑃∗ − 1], 𝑥𝑡𝑃∗ ,𝑤𝑡𝑃∗ , 𝑡𝑃∗ ) in
𝐿𝑃
∗

state for some (honest) party 𝑃∗ such that (𝑥𝑡𝑃∗ ≠

𝑥) ∨ (𝑥 ∉ S𝑃
∗ [𝑡𝑃∗ − 1]) and VerStatus(𝛼, 𝑥,𝑤) = 1, it

returns (sid,Ver_Status, 𝛼, 𝑥,𝑤,⊥) to 𝑃 . Otherwise,
it computes 𝜙 ← VerStatus′(𝛼, 𝑥,𝑤).

(2) It returns (sid,Ver_Status, 𝛼, 𝑥,𝑤, 𝜙) to 𝑃 or S.
■Upon receiving any command message from party 𝑃 ∈ Pcorr,
it forwards it to S. Upon receiving the token back from S on
behalf of 𝑃 , it returns whatever it receives back to 𝑃 .

Figure 18: The accumulator functionality FAcc (P) inter-
acting with the parties in P and the simulator S.

Remark 1 (Comparison between Facc and the accumulator func-
tionality in [6]). As already mentioned, Facc can be seen as an
adaptation of the generic accumulator functionality in [6] for our
purposes. Specifically, we only consider additions and membership
checks, so Facc abstracts the class of additive and positive accu-
mulators. Besides, we are interested in scenarios where, although
there may be an agreement on the accumulated elements, the accu-
mulated values’ computation is done locally by each party. Thus,
unlike the functionality in [6] that captures the maintenance of a
shared accumulator state by an accumulator manager, our func-
tionality Facc handles an accumulator state for each honest party
where the only shared data are the accumulator algorithms and
the initial value and auxiliary information. Moreover, we do not re-
quire a mechanism that verifies if the Update operation was carried
out correctly, as each party is responsible for updating their value
locally. Other notable differences between the two functionalities
are:

– The initial set (denoted as 𝑆0 in [6]) is always ∅.
– Since the hash-based construction in [57] that will be used in

our realization does not utilize a secret key, the Gen algorithm
does not output a value sk in our case.

– In an Update request, Facc also accepts an accumulated
value 𝛼 (besides 𝑥). This is because in our setting, there is
no shared state and we allow “branches” in the history of
accumulated multisets/lists. Thus, we provide 𝛼 that serves
as the starting point.

– In our e-voting use case, the users (voters) will obtain a
unique credential in order to vote. So, generating multiple
witnesses for the same element is an accumulator operation
that will not take place and, unlike the functionality in [6],
Facc does not considerWitCreate requests.

G.2 The protocol Πacc

The protocol Πacc (P, F Gen
CRS, Σacc) is presented in Figure 19 and,

briefly, it operates as follows: Each party 𝑃 has hard-coded the
accumulator algorithms (Update,WitUp,VerStatus), and main-
tains the mapping S𝑃 from the number of accumulated elements to
the accumulated multiset or list and an operation counter 𝑡𝑃 .
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When a party receives a Setup command fromZ, she requests
the setup parameters from the FCRS functionality (cf. Figure 7),
parameterized by the Gen algorithm. We stress that in our hash-
based instantiation, we use the Gen algorithm that always returns
the empty set. Thus, FCRS can be realized in a decentralized manner
(e.g., parties trivially return ∅ upon the Setup request fromZ).

If a party receives the Update command fromZ along with an
accumulated value 𝛼 and an element 𝑥 , she checks in her records if
the value 𝛼 has previously occurred. If not, she returns ⊥ (like FAcc,
honest parties deny accumulating values for previously unknown
accumulators). Then, she updates the accumulator and her records,
and returns the new accumulator value along with the witness for
the value 𝑥 .

Upon receiving aWit_Up command along with the old accumu-
lator value 𝛼old, the accumulator value in which the new witness
must be compatible with, 𝛼new, the accumulated value 𝑥 , the old
witness for 𝑥 and a series of update messages, the party 𝑃 searches
if in her database for these accumulator values, the value 𝑥 and
the series of update messages are already registered. If so, then she
checks that there is an “update path” from the value 𝛼old to 𝛼new.
This means that there is a chain of tuples from 𝛼old to 𝛼new with: (i)
The operation counter 𝑡𝑃 increases by one in each part-tuple of the
chain; (ii) The data S𝑃 are increasing in a progressive way in each
tuple of the chain including previous values. If so, she computes
and returns the new witness by using the Wit_Up function.

Finally, when 𝑃 receives Ver_Status along with an accumulator
𝛼 , a value 𝑥 and a witness 𝑤 , she checks that 𝑥 is part of 𝛼 by
using𝑤 and function Ver_Status. Note that, these values are not
necessary to be registered in the party’s database, enabling us to
cross-check values between parties. Then, 𝑃 returns whatever she
receives from Ver_Status.

Πacc (P, F Gen
𝐶𝑅𝑆

, Gen, Update, WitUp, VerStatus)

Each party 𝑃 ∈ P has hard-coded the accumulator algorithms
(Update,WitUp,VerStatus) and has initialized the counter
𝑡𝑃 as 0, themapping from the number of accumulated elements
to the accumulated list as S𝑃 such that S𝑃 [0] = ∅, and the list
𝐿𝑃state as described in Subsection G.1.1.
■Upon receiving (sid, Setup) fromZ for the first time, 𝑃 does:

(1) She sends (sid,CRS) to F Gen
CRS. Upon receiving

(sid,CRS, (𝛼0,𝑚0, 𝑣0)) from F Gen
CRS, she appends the

tuple (𝛼0, (𝑚0, 𝑣0),Null,Null,Null,Null, 0) to 𝐿𝑃state.
(2) She returns (sid, Setup, ⟨(𝛼0,𝑚0, 𝑣0), Update , WitUp,

VerStatus⟩) toZ.
■ Upon receiving (sid,Update, 𝛼, 𝑥) from Z, if 𝑃

has submitted a Setup request and there exists
a tuple (𝛼,𝑚tP , upmsgtP , S

𝑃 [tP − 1], 𝑥 ′,𝑤𝑥 ′
tP , tP) or

(𝛼, (𝑚0, 𝑣0),Null,Null,Null,Null, 0) in 𝐿𝑃state, she does:
(1) She increases the counter tP ← tP + 1.
(2) She computes (𝛼tP ,𝑚tP ,𝑤

𝑥
tP , upmsgtP ) ←

Update(𝛼,𝑚tP−1, 𝑥), if tP ≠ 1 sets S𝑃 [tP −
1] = S𝑃 [tP − 2] ∪ {𝑥}. She appends
(𝛼tP ,𝑚tP , upmsgtP , S

𝑃 [tP − 1], 𝑥,𝑤𝑥
tP , tP) to 𝐿

𝑃
state.

(3) She returns (sid,Update, 𝛼, 𝑥, 𝛼tP ,𝑤𝑥
tP , upmsgtP ) toZ.

■ Upon receiving (sid,Wit_Up, 𝛼old, 𝛼new, 𝑥,𝑤old,

(upmsgold+1, . . . , upmsgnew)) from Z, if 𝑃

has submitted a Setup request and there ex-
ist tuples {(𝛼old,𝑚old, 𝑣old, upmsgold, S

𝑃 [old −
1], 𝑥,𝑤old, old), . . . , (𝛼new,𝑚new, 𝑣new, upmsgnew,
S𝑃 [new− 1], 𝑥new,𝑤new, new)} in 𝐿𝑃state with new > old such
that 𝑥 ∈ S𝑃 [old − 1] ∩ · · · ∩ S𝑃 [new − 1], she does:

(1) She computes 𝑤new ←
WitUp(𝑥,𝑤old, (upmsgold+1, . . . , upmsgnew)).

(2) She returns (sid,Wit_Up, 𝛼old, 𝛼new, 𝑥,𝑤old,

(upmsgold+1, . . . , upmsgnew),𝑤new) toZ.
■Upon receiving (sid,Ver_Status, 𝛼, 𝑥,𝑤) from Z, if 𝑃 has
submitted a Setup request, she does:

(1) She computes 𝜙 = VerStatus(𝛼, 𝑥,𝑤).
(2) She returns (sid,Ver_Status, 𝛼, 𝑥,𝑤, 𝜙) toZ.

Figure 19: The accumulator protocol Πacc for parties

in P, parameterized by the accumulator algorithms

Gen, Update, WitUp, VerStatus, and the common reference

string functionality FCRS w.r.t. the distribution 𝐷 = {𝑟 :
(𝛼0,𝑚0, 𝑣0) ← Gen(1_); 𝑟 = (𝛼0,𝑚0, 𝑣0)} .

G.3 Definitions of secure accumulator

In [57], a Merkle-tree [16] is deployed to store the accumulated
values. The Gen(1_) procedure always returns an empty string. The
witness that a value 𝑥 has been accumulated is the path from the
leaf of the Merkle-tree to the top hash. For more information and a
detailed description of the actual construction we refer the reader
to [57, Section 4].

The aforementioned hash-based construction in [57] is proven
secure under a game-based framework that captures two security
properties: Correctness [57, Definition 1] and Soundness [57, Defini-
tion 2]. Informally, Correctness states that for every accumulated
element 𝑥 we added at some point between a series of sequential
additions in the accumulator, we get its witness𝑤𝑥 . After all addi-
tions have taken place, we update𝑤𝑥 by using the WitUp algorithm
for each one of these additions after 𝑥 . The property requires that
the verification via VerStatus that 𝑥 is part of the accumulator
with the final witness 𝑤𝑥

𝑡 , where 𝑡 indicates the total number of
added elements, returns 1 with probability 1. Moreover, Soundness
informally states that the adversary has negligible probability of
succeeding in the following experiment: it adds to the accumulator
an arbitrary set of elements. Then, it attempts to find an element
and a witness of it such that: (i) that element is not part of the
resulting accumulator; (ii) the VerStatus algorithm with input the
resulting accumulator, that element and its witness returns true.

Below are the definitions of Correctness and Soundness as appear
in [57].

Definition G.1 (Correctness). An accumulator (Gen, Update, WitUp,
VerStatus) is correct, if an up-to-date witness𝑤𝑥 corresponding to
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value𝑥 can always be used to verify themembership of𝑥 in an up-to-
date accumulator 𝛼 . More formally, for all security parameters _, all
values 𝑥 and additional sets of values [𝑦1, . . . , 𝑦𝑡𝑥−1], [𝑦𝑡𝑥+1, . . . , 𝑦𝑡 ],
it holds that

Pr


𝛼0 ← Gen(1_) ;
(𝛼𝑖 , 𝑤𝑦𝑖

𝑖
, upmsg𝑖 ) ← Update(𝛼𝑖−1, 𝑦𝑖 ) for 𝑖 ∈ [1, . . . , 𝑡𝑥 − 1];

(𝛼𝑡𝑥 , 𝑤𝑥
𝑡𝑥
, upmsg𝑡𝑥 ) ← Update(𝛼𝑡𝑥 −1, 𝑥) ;

(𝛼𝑖 , 𝑤𝑦𝑖
𝑖

, upmsg𝑖 ) ← Update(𝛼𝑖−1, 𝑦𝑖 ) for 𝑖 ∈ [𝑡𝑥 + 1, . . . , 𝑡 ];
𝑤𝑥
𝑖
← WitUp(𝑥, 𝑤𝑥

𝑖−1, upmsg𝑖 ) for 𝑖 ∈ [𝑡𝑥 + 1, . . . , 𝑡 ] :
VerStatus(𝑎𝑡 , 𝑥, 𝑤𝑥

𝑡 ) = 1


= 1.

Definition G.2 (Soundness). An accumulator (Gen, Update, WitUp,
VerStatus) is sound (or secure), if it is hard to fabricate a witness
𝑤 for a value 𝑥 that has not been added to the accumulator. More
formally, for any PPT stateful adversaryA there exists a negligible
function ` (·) such that:

Pr



𝛼0 ← Gen(1_) ; 𝑡 = 1;𝑥1 ← A(1_, 𝛼0) ;
while 𝑥𝑡 ≠ ⊥
(𝛼𝑡 , 𝑤𝑥𝑡

𝑡 , upmsg𝑡 ) ← Update(𝛼𝑡−1, 𝑥𝑡 ) ;
𝑡 = 𝑡 + 1;
𝑥𝑡 ← A(𝛼𝑡−1, 𝑤

𝑥𝑡 −1
𝑡−1 , upmsg𝑡−1) ;

(𝑥, 𝑤) ← A :
𝑥 ∉ {𝑥1, . . . , 𝑥𝑡 } and VerStatus(𝛼𝑡−1, 𝑥, 𝑤) = 1


≤ ` (_) .

G.4 Proof of Theorem 6.2

We instantiate the accumulator algorithms Gen, Update, WitUp,
VerStatus with the ones in the hash-based construction as pre-
sented in [57] with the exception that the syntax algorithms Add,
MemWitUpOnAdd, VerMem in [57] are named Update, WitUp, VerStatus,
respectively to match the syntax of [6]. From [57, Theorem 1], we
get the following Lemma.

Lemma G.3. The hash-based construction Σacc = (Gen, Update,
WitUp, VerStatus) presented in [57], satisfies Correctness (cf. Defini-

tion G.1) and Soundness (cf. Definition G.2), as long as the underlying

hash function is collision resistant.

Armed with Lemma G.3 , we prove that the protocol Πacc, when
instantiated by an accumulator scheme that satisfies the security
properties in [57], UC realizes Facc as stated in the next theorem.

Theorem 6.2. The protocol Πacc (P, F Gen
CRS, Σacc) described in Fig-

ure 19 UC-realizes Facc (P) in the F Gen
CRS-hybrid model if and only if

Σacc = (Gen, Update, WitUp, VerStatus) satisfies Correctness and
Soundness.

Moreover, if Σacc is instantiated with the accumulator scheme

in [57], then Πacc (P, F Gen
CRS, Σacc) UC-realizes Facc (P) without trusted

party.

Proof. (⇒)For proving the first direction, let us assume that
Σacc does not satisfy Correctness or Soundness. We construct an en-
vironmentZ∗ such that for a dummy adversary (cf. Definition A.1
and [13, section 4.3.2]) Adummy and for every simulator S ourZ∗

distinguishes the real from the ideal execution with probability 𝛽 (_)
where _ the security parameter and 𝛽 a non-negligible function.
Formally: ��� Pr

[
EXEC𝐹acc

Z∗,S (_) = 1
]
−

− Pr
[
EXECΠacc

Z∗,Adummy
(_) = 1

] ��� ≥ 𝛽 (_).
(6)

Specifically, let us assume that Soundness property is not satis-
fied. This means that there is an adversary B that wins the game
in [57, definition 2, p.7] with probability greater than 𝛽 (_), where
𝛽 () a non-negligible function. We constructZ∗ as follows:

Initially,Z∗ asks for the accumulator’s algorithms by sending
(sid, Retrieve) to an uncorrupted party. If S does not provide Facc
with the ones in Σacc, thenZ∗ can trivially distinct the two settings
with probability 1 and this completes the proof for the first direction.

In the case that S provides Facc with the same algorithms as
in Σacc, Z∗ does: It executes internally the adversary B as if it
was the challenger of the Soundness property. InitiallyZ∗ sends
(sid, Setup) to an uncorrupted party 𝑃 and gets back the initial
accumulator value 𝛼0. Then, Z∗ provides 𝛼0 to B as if it was
the challenger of the game. For every 𝑥𝑙 ≠ ⊥ element Z∗ gets
from B along with the current accumulated value 𝛼𝑙 , it sends
(sid,Update, 𝛼𝑙 , 𝑥𝑙 ) to the same honest party 𝑃 . Upon receiving
(sid,Update, 𝛼𝑙 , 𝑥𝑙 , 𝛼𝑙+1,𝑤

𝑥𝑙
𝑙+1, upmsg𝑙+1) from 𝑃 , Z∗ sends (𝛼𝑙+1,

𝑤
𝑥𝑙
𝑙+1, upmsg𝑙+1) to B as if it was the challenger of the game and

repeats until it receives an 𝑥∗
𝑙
= ⊥ from B. Let us assume that

B sends 𝑥∗
𝑙

= ⊥ after 𝑡fin queries. In that case, B sends (𝑥,𝑤)
to Z∗. We know that this 𝑥 is not previously queried but still
the algorithm VerStatus(𝛼𝑡fin , 𝑥,𝑤) will return 1 with probability
greater that 𝛽 (_) from our assumption. Based on that, Z∗ sends
(sid,Ver_Status, 𝛼fin, 𝑥,𝑤) to any honest party 𝑃 . Observe that, if
we are in the ideal setting, with probability more than 𝛽 (_), 𝑃 will
return (sid,Ver_Status, 𝛼fin, 𝑥,𝑤,⊥) toZ∗. On the contrary, if we
are in the real setting, 𝑃 will return (sid,Ver_Status, 𝛼fin, 𝑥,𝑤, 𝑥),
where 𝑥 ∈ {0, 1}. As a result,Z∗ will distinct the real from the ideal
setting with probability more than 𝛽 (_), thus non-negligible.

Lets us assume that the Correctness property is not satisfied. This
means that there is an𝑥 and an additional set of values [𝑦1, . . . , 𝑦𝑡𝑥−1],
[𝑦𝑡𝑥+1, . . . , 𝑦𝑡 ] that after updating the witness of 𝑥 with the most re-
cent addition in the accumulator, the algorithm VerStatus(𝛼𝑡 , 𝑥,𝑤𝑥

𝑡 )
returns 0 with at least non-negligible probability 𝛽 ′(_) (where 𝛼𝑡
the latest accumulated value, and𝑤𝑥

𝑡 the updated witness of 𝑥 ). It is
easy to observe that, ifZ∗ sends that 𝑥 and the mentioned additions
in the ideal execution, Facc will return ⊥ with probability 𝛽 ′(_).
Specifically, if the number of added elements after 𝑥 are 0, thenZ∗
sends (sid,Update, 𝛼, 𝑥) to an honest party 𝑃 for a previously re-
turned accumulated value 𝛼 and Facc returns (sid,Update, 𝛼, 𝑥,⊥)
message with probability at least 𝛽 ′(_). In the case that the added
elements after 𝑥 are not 0,Z∗ adds the element 𝑥 and the remain-
ing elements by sending an Update command message. Next,Z∗
updates the initial witness of 𝑥 by sending a Wit_Up command
message along with the update messages after the addition of 𝑥 .
Observe that Facc will return a ⊥ message with probability at least
𝛽 ′(_). On the contrary, in the real setting theZ∗ receives back the
updated witness. This completes the first direction of the proof.

(⇐). For proving the second direction, assume thatΠacc (P, Σacc)
does not UC-realize Facc. This means that for a dummy adversary
Adummy and for every simulator S there exists an environment
Z such that equation 6 holds. We show that Σacc does not satisfy
either Correctness or Soundness.

If Σacc satisfies Correctness, we construct an adversary B that
wins the soundness game with probability greater than 𝛽 (_), where
𝛽 is a non-negligible function. Given that Σacc satisfies Correctness,
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observe that the probability Facc to return a ⊥ message from the
command messages (Update,Wit_Up,Retrieve) given by Z is
negligible. The only way for Facc to return a ⊥ message given that
S provides the algorithms in Σacc, is whenZ sends the command
message (sid,Ver_Status, 𝛼, 𝑥,𝑤) to an honest party for a value
𝑥 and the witness of it 𝑤 such that it has not been accumulated
before and the verification algorithm VerStatus(𝛼, 𝑥,𝑤) returns 1.

We define S∗ as follows: Upon receiving the corruption vector
fromZ it forwards it to Adummy as if it was formZ. Upon receiv-
ing it back from Adummy it forwards it to Facc. Upon receiving
(sid,Gen) from Facc, S∗ returns the algorithms in Σacc. Whatever
message receives fromZ or from Facc from behalf of a corrupted
party, it forwards it to Adummy as if it was that party.

From our assumption we know that for such an S∗ there is an
environmentZ∗ such that equation 6 holds.

Given thatZ∗ we construct an adversary B that internally exe-
cutes Z∗ to win the Soundness game with non-negligible proba-
bility. B picks at random an honest party 𝑃 (we know that there
exist at least one honest party, else the real from the ideal exe-
cution would be indistinguishable). Whatever (sid,Update, 𝛼, 𝑥)
commandZ∗ sends to B as if it was the honest party 𝑃 , B forwards
𝑥 to the challenger of the Soundness game and receives back the
new accumulated value 𝛼𝑡 , the witness 𝑤𝑥 , and the update mes-
sage upmsg𝑡 . Then B returns (sid,Update, 𝛼, 𝑥, 𝛼𝑡 ,𝑤𝑥

, upmsg𝑡 ) to
Z as if it was 𝑃 . At some point, from our hypothesis, Z∗ sends
(sid,Ver_Status, 𝛼, VerStatus, 𝑥,𝑤) to B playing the role of an
honest party (not necessary the honest party 𝑃 ), such that 𝑥 was
not queried before by Z∗ and VerStatus(𝛼, 𝑥,𝑤) = 1 for a re-
turned accumulated value 𝛼 received before with probability 𝛽 (_).
The probability this party to be 𝑃 is equal with 1/|Pcorr |. Given
that it was 𝑃 , B, after checking that VerStatus(𝛼, 𝑥,𝑤) = 1 for an
unqueried 𝑥 for an existing accumulated value 𝛼 , sends the spe-
cial symbol ⊥ to the challenger and then sends (𝑥,𝑤). Observe
that the probability for B to win the game is 𝛽 (_)/|Pcorr |, thus
non-negligible. This completes the proof.

□

H PROOF OF THEOREM 6.3

Theorem 6.3 The protocol Πelig (V, SA, Facc, FNIC, FSOK, FBC,
delay_cast, Status) described in Figure 3 UC-realizes Felig (V, SA,
delay_cast, Status) in the (Facc, FNIC, FSOK, FBC,Gclock)-hybrid
model.

Proof. We show that for every adversary A there is a simula-
tor S such that for every environment Z cannot distinguish the
ideal from the real execution except with negligible probability (cf.
Definition A.1). More formally:��� Pr

[
EXEC

𝐹elig

Z,S (_) = 1
]
− Pr

[
EXEC

Πelig

Z,A (_) = 1
] ��� = negl(_). (7)

We construct such an S as follows:
Setup:Upon receiving (sid,Setup_Elig,Velig, 𝑡cast, 𝑡open) fromFelig,
S sends (sid,Gen) toA as if it was Facc. Upon receiving (sid,Gen,
Gen, Update, WitUp, VerStatus) fromA, it computes the initializa-
tion triple (𝛼0,𝑚0, 𝑣0) ← Gen(1_). If VerStatus(𝛼0,Null, 𝑣0) = 0,
it returns ⊥ to Felig. Else, it sets 𝑆𝑡gen = (𝛼0,𝑚0, 𝑣0).

Next, S sends (sid,Com_Setup_Req, ssid) for a random ssid to
A as if it was FNIC. Upon receiving (sid,Com_Setup_Req, ssid,𝑚)
from A, S parses 𝑚 as (cparcom, COM.TrapCom, COM.TrapOpen,
COM.Verify, ctdcom) and stores all algorithms.

It sends (sid, Setup) to A as if it was FSOK . Upon receiving
(sid,Algorithms, Verify, Sign, SimSign, Extract) as if it wasFSOK,
it stores all algorithms.

It sets reg.par ← (Velig, ®𝑡 := (𝑡cast, 𝑡open, delay_cast), 𝑆𝑡gen)
and provides A with (sid, Broadcast, reg.par) as if it was FBC.
Upon receiving the token back from A, S defines the algorithms
(GenCred, AuthBallot, VrfBallot, UpState) as follows:

GenCred(1_, reg.par)
(1) The parameters cparcom, ctdcom are hard-coded.

(2) It picks cr
$← {0, 1}𝑝4 (_) .

(3) It computes (ĉr, cinfo) ←
COM.TrapCom(sid, cparcom, ctdcom).

(4) It computes copen← COM.TrapOpen(sid, cr, cinfo).
(5) It returns (cr, ĉr, copen).

AuthBallot(𝑣, cr, 𝑆𝑡fin, reg.par, copen)
(1) It computes 𝜎 ← SimSign(𝑣, (cr, 𝑆𝑡fin)).
(2) If Verify(𝑣, (cr, 𝑆𝑡fin), 𝜎) = 1, it returns 𝜎 , else it re-

turns ⊥.

VrfBallot(𝑣, ®𝜎 = (cr, 𝜎), 𝑆𝑡fin, reg.par)
(1) The relation𝑀𝐿 is hard-coded.
(2) It computes𝑤 ← Extract(𝑣, (cr, 𝑆𝑡fin), 𝜎)
(3) If 𝑀𝐿 ((cr, 𝑆𝑡fin),𝑤) = 1, it returns

Verify(𝑣, (cr, 𝑆𝑡fin), 𝜎).
(4) If 𝑀𝐿 ((cr, 𝑆𝑡fin),𝑤) = 0 and Verify(𝑣, (cr, 𝑆𝑡fin), 𝜎) =

1, it returns ⊥.
(5) In any other case it returns Verify(𝑣, (cr, 𝑆𝑡fin), 𝜎).

UpState(𝑆𝑡gen, {ĉr𝑗 }𝑝5 (_)
𝑗=1 )

(1) For each 𝑗 = 1 to 𝑝5 (_) it computes
(𝛼 𝑗 ,𝑚 𝑗 ,𝑤 𝑗 , upmsg𝑗 ) ← Update(𝛼 𝑗−1,𝑚 𝑗−1, ĉr𝑗 )
and it stores all the resulting values.

(2) It returns 𝑆𝑡fin = 𝛼𝑝5 (_)

Then,S sends (sid, Set_Up, GenCred, AuthBallot, VrfyBallot,
UpState, 𝑆𝑡gen) to Felig. Upon receiving (sid, Elig_Par, reg.par)
from Felig it stores reg.par.
Credential generation:Upon receiving (sid,Gen_Cred, 𝑐𝑟,𝑉 ) from
Felig,S sends (sid, Broadcast, (𝑉 , ĉr)) toA as if it was FBC. Upon
receiving the token back from A, it sends (sid,Gen_Cred, ĉr,𝑉 )
to Felig.

Whatever command/message received on behalf of a corrupted
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party from Felig, S forwards it to A as if it was that party and
returns whatever message it receives fromA for that party to Felig.

As can be seen, the algorithm AuthBallot uses the algorithm
SimSign instead of the Sign exactly as FSOK does. With this, we
can guarantee that the distribution of signed messages between
Felig and Πelig are the same. Observe that, if a party requests the
signature for a message from FSOK, if the verification returns “false”
then FSOK returns⊥. This behaviour is integrated into AuthBallot
algorithm and thus the same happens in Felig so that the real and
ideal executions match. Note that this does not mean that Felig does
not capture the correctness of a signed ballot and that the property
depends on the algorithms; the correctness of an authenticated
ballot is captured with the command message Auth_Ballot as
can be seen in Figure 13.

Similarly, the algorithm GenCred integrates a part of what FNIC
does so that to match both real and ideal execution and specifically
the distributions of the credential generation. The same applies for
the algorithm UpState and Facc.
Next, we show that the algorithms GenCred, AuthBallot, VrfBallot,
UpState that S defines are such that the steps followed in Πelig
when a Auth_Ballot, Ver_Ballot, or Link_Ballots command
is sent byZ, preserve the respective properties captured by Felig.
Recall that Felig captures eligibility (only the ballots authenticated
via the command Auth_Ballot pass the verification test via the
command Ver_Ballot); one-voter-one-vote (multiple ballots from
an eligible voter are dropped all except one via the command
Link_Ballots). Below we show how each command message in
Πelig is related with the algorithms S provides Felig so to match
both executions.

• Auth_Ballot: In Πelig, the party 𝑃 computes the final ac-
cumulated value by providing Facc with the list of all public
credentials. Next, for the resulting accumulated value, she
requests the witness of her credential from Facc. Finally, 𝑃
requests from FSOK the signature of knowledge defined for
the relation𝑀𝐿 for the requested ballot. Observe that FSOK
signs the ballot via the algorithm SimSign only if 𝑃 provides
a valid witness. A valid witness can be provided if and only
if a party is eligible. The only way for a non-eligible party
to get access to a valid witness is by extracting it from the
signature or the commitment, which is impossible as the
SimSign and COM.TrapCom does not accept the witness or
the credential as input.
In case the witness is not valid or the resulting signature
does not pass the verification test of FSOK, FSOK returns ⊥.
This is exactly what Felig captures except the case of a valid
signature and an invalid verification test as in FSOK. We
include this case in the algorithm AuthBallot. Thus, both
real and ideal execution behave the same for that command
message.
• Ver_Ballot: This command is handled solely byFSOK. Specif-
ically, FSOK returns true if it previously has recorded the
input signature (meaning that the signature is issued by an
eligible voter, item 2) in Felig), exactly like Felig.
In case the signature is not a legitimate one, meaning that
it was not previously recorded in FSOK, then FSOK checks
if a valid witness can be extracted by applying the Extract

function. If yes, then it returns true. We included that check
in VrfBallot so to capture the case that the verification re-
turns “true” but there is no recorded signature for corrupted
parties (item 3) in Felig). Observe that if a party is corrupted
still can be eligible and thus provide a signature under a valid
witness.
In the case that FSOK cannot extract any witness, a forgery
has occurred and it returns ⊥. This means that either the
party is not eligible (item 3) in Felig) or the adversary man-
aged to make a forgery (item 4) in Felig). Thus, both real and
ideal execution behave the same for this command message.
• Link_Ballots: Finally, in Πelig the voter checks if the input
signatures are valid by forwarding them in FSOK. In turn,
FSOK checks the validity of the signatures similar to the
case that the voter receives the command Ver_Ballot as
described before. If this is the case and the providing cre-
dentials are the same (meaning that the valid ballots are
originated from the same voter) then the voter returns 1,
meaning that the ballots are related. Similarly, in Felig the
functionality checks if there are tuples both from corrupted
and uncorrupted, yet eligible, voters with the same creden-
tial. If this is the case, Felig returns 1. The only way for these
commands to not behave the same is FSOK to verify as true a
signature for a non-eligible party. This case is impossible as
we explained in the previous paragraph. Thus, both real and
ideal execution behave the same for this command message.

By the above, the distributions of real and ideal setting are exactly
the same thus the proof is complete. □

I PROOF OF THEOREM 6.4

Theorem 6.4. The protocol Πvm (V, SA, F leak,delay_gen
TLE , FBC, F

ℓ,1,𝑝
an.BC,

Status) described in Figure 4 UC-realizes Fvm (V, SA, delay_gen,
delay_cast, Status) in the (F leak,delay_gen

TLE , FBC, F
𝑙,1,𝑝
an.BC,Gclock)-hybrid

model, where leak(Cl) = Cl + 1, delay_cast = 𝑙 + 1, and 𝑝 (_) is the
length of a pair of a ballot 𝑣 and authentication data ®𝜎 .

Proof. In cases where a corrupted party receives input and we
do not describe her behaviour, we assume that the message is sent
to S from Fvm and S forwards that message toA as if it was from
that party. Then S returns to Fvm whatever it receives from A.

We describe the ideal adversary S. When S receives the cor-
ruption vector from Z, S forwards it to A as if it was from Z.
When S receives back the corruption vector from A playing the
role of both of FTLE, FBC, S forwards it to Fvm. When S receives
the election information (sid, Election_Info, vote.par) from Fvm,
S sends (sid, Broadcast, (SA, vote.par)) to A as if it was FBC.

Upon receiving a Gen_Ballot request from Fvm on behalf of a
voter𝑉 ,S forwards themessage toA as if it was fromFTLE and it re-
turns the response ofA toFvm. Upon receiving anAdvance_Clock
command from Gclock on behalf of a voter 𝑉 , S forwards the mes-
sage to A as if it was Gclock. Upon receiving an Update command
as if it was FTLE from A, it forwards the message to Fvm.

Upon receiving (sid,Cast_Ballot, (𝑣, ®𝜎)) from Fvm it sends
(sid, Broadcast, (𝑣, ®𝜎)) to A as if it was F delay_cast,1,𝑝

an.BC .
When S receives a Cast request from Fvm on behalf of a cor-

rupted voter 𝑉 , it forwards the message as a Broadcast request
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to A as if it was from F delay_cast,1,𝑝
an.BC and it returns the message it

received from A back to Fvm.
Upon receiving (sid,Open, 𝑣) from Fvm (where 𝑣 is a ballot not

generated by Fvm),S sends (sid,Dec, 𝑣 , 𝑡open) toA as if it was from
FTLE. When S receives (sid, Dec, 𝑣 , 𝑡open, 𝑜) fromA, it returns the
message (sid, Open, 𝑣 , 𝑜) to FTLE.

Upon receiving (sid, Leakage) fromZ, S forwards the message
to A as if it was fromZ. Upon receiving (sid, Leakage) from A
as if it was FTLE it forwards the message to Fvm and returns to A
whatever receives. Observe that the simulation fails only in case
that the provided tuples from Fvm are not the same as the provided
one from FTLE. Due to the fact that all honest parties encrypt with

time 𝑡open and delay_cast ≥ 1 this never occurs. Specifically, A
expects to receive all pairs of plaintexts/ciphertexts from FTLE at
time Cl ≥ 𝑡open − 1 (because leak = 1). By that time it holds that
Status(Cl, ®𝑡,Cred) = Status(Cl, ®𝑡,Cast) = Status(Cl, ®𝑡, Tally) =
⊥ or Status(Cl, ®𝑡, Tally) = ⊤. Thus, S can retrieve also all the pairs
of plaintexts/ciphertexts from Fvm at time Cl = 𝑡open − 1. S reads
the time Cl from Gclock. Then S playing the role of FTLE returns
to A all the maliciously generated ciphertexts with time labelling
until time leak(Cl).

The distribution of messages is the same in both the ideal and
the hybrid setting. As a result, the simulation is perfect. □
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