=10) ¢

Pattern matching

Léo Ackermann

Pattern matching

Intuition. Looking for a given pattern within a given string.

Definition (Pattern matching variants).

l

M Input: a string $ and a pattern P
< ' Output (Membership): whether P appears in § as a substring
harderthan 5 | Output (Count): the number of occurrences of P in S

< Output (LocateAll): the starting positions of P in §, that is the i's such that S}; ;,\p)) = P

Naive approach.

Algorithm 1: Naive algorithm for LocateAll

r occ < ||

2: fork € [0..|S| — |P|) do

3: if Occurs(P, S, k) then

4 return occ = occ + [k]
s: return occ

6: function Occurs(P, S, k):
7. fori € [0..|P|)do

8: if P # Sik+4 then
9 return False

10: return True

Pattern matching 2

Pattern matching as a routine task

Motivation. Pattern matching is rarely an isolated task

[A] Preprocessing pattern, for a ((P, $;));cn instance list

Application. Epidemic survelllance

1. Sequence sick persons' genomes
2. Locate the virus (fixed pattern) within the latter
3. Look whether/how the virus evolved

[B] Preprocessing genome, for a ((P;, §));-p instance list

Application. Genetic condition diagnosis

1. Sequence a human genome ’
2. Search for fragments within preprocessed reference genomes (whose conditions are known)
3. Aggregate and diagnose

Application. In-depth study of a genome

1. Search for specific sequences, tandem repeats, palindromes, ...

Pattern-matching 3

Outline

Various genome representations.

Compressed genome Sketched genome

o/

Query (membership/count/locate) complexity around O(P + | output|)

Outline 4

Part PS-A

Preprocessing string - Searching with suffixes

Main observation

Key idea. A pattern P is a substring of a string S iff P is the prefix of a suffix of .

P 6: function Occurs(P, S, k):
q 72 fori € [0..|P|)do
8: if Py # Sik+4 then
9: . L return False
10: return True

T —

- ::Ti

A » Prefix matching (easier) in the suffixes of P, simultaneously j'

Outline 6

Suffix tries

!
|

. = (membership)

Trie of {knight, knife, kind, king, kingdom}

Outline

Definition (Trie).

—— — _— e e — —— = S—

- A trie that represent a set of strings & is a tree of at most | &' | leaves and | & | marked
" nodes whose edges are labeled by letters of 2. and such that: |

S € & iff S spells a path from the root to a marked node }
' = (compaction 1) Outgoing edges of a given nodes are decorated by different letters
- = (compaction 2) Every leaf is marked

S : —
|

Membership (algo). Try to unroll the word from the root of the tree.

Build (algo).

—> O(|S]) time

Algorithm 4: Construction of the trie of S

: T < NEWUNMARKEDROOT

2: for§ € Sdo
3: tetter < 0, node < root(T)

4 forie€0..|5]) do

5: ~if child(node, S[i) doesn’t exists then

6: CrReATEUNMARKEDCHILD(node, S|;))

e ~ node « child(node, S};))

8: Marx(node)

o: return T —> O(Z | S'|) space and time

Sed

Suffix tries

Naive idea. The suffix trie of S is the trie of its suffixes.

PROBLEM. eg. ST("BANANA")

I
N
A. ® N
N A. ®
® A
A. N. B
N. A N.
A N A
N N

Deflnltlon (Sufflx tr|e)

==

—

eg. ST("BANANA")

Outline

=S =

et
e

* Not all suffixes are created equal!

The suffix tree of S is the trie of the suffixes of S, where $ is a fresh symbol that doesn' W»
“appear in S, called the termination symbol. ‘

— @(\S\z) space
— O(|S|*) time to build

Pattern matching in suffix tries (Membership)

Algorithm 5: Membership on suffix trie

Input: The suffix trie ST g of S, a pattern P
Output: Whether P is a substring of S, or not

: node + root(STs)

. fori € [0..|P|)do
if child(node, P;)) doesn’t exists then
. return False
node < child(node, Py;)

. return True

Eg. Is "AN" a substring of "BANANA"? what about "NAB"?

Outline

»w > Z2 > Z >

— O(|P| - €(32child)) time
|

Pattern matching in suffix tries (Count)

Eg. How many times "AN" appears as a substring of "BANANA"?

S
OCCH1
OCC2
Algo.
Algorithm 6: Count on suffix trie
Input: The sufhx trie ST s of S, a pattern P ‘ 5
Output: The number of occurences of P in S — @((‘ P‘ + ‘S‘) . %(Chlld)) time
i node + root(STs)
2: fori € [0..|P|)do
w | ifchild(node, Py) doesn’t exists then Improvement.
4: _ return False . .
5: node < child(node, Py;) — @((‘ P ‘) ; %(Chlld)) time
6: return CounTtCoVveREDLEAVES(node) Preprocess "countCoveredLeaves" in O(| S |* - €(child)) time
Store the results at the level of tree nodes

Outline 11

Pattern matching in suffix tries (LocateAll)

Eg. Where are the starting positions of the "AN" pattern in "BANANA"?

Ji Stored at node leve! e

A Computed during "Build ST"

N : S

Al N -

Z . $ A OCC2
- L Stored at node level

— O(|P| + |S|?) - €(child)) time

Other method (same time complexity). Starting position = end position - depthNode

Outline 19

Beyond pattern matching

A few examples.

Tandem Repeat repeated sequence
NI OO NI DDV = Hotspots for recombination Deepest node
Interspersed Repeat repeated sequence that covers
——— T ——— .
MNP DD/ = Transposable elements multiple leaves
R— . B A
N s A
¢ A
A N
N ./: N.\$. Highest node that covers a single leaf
=» Find good PCR primers ¢ A '
A .$/- A
$ @
|

=P | ocal alignment

eg. ST("BANANA") U ST("

Outline

)

Deepest "green”
node

13

Limits

Children storage.
- Array: test existence in O(1) time, takes O(|2 |) space
- List: test existence in O(| children|) time, takes O(| children|) space
- Dictionary: test existence in @O(1) time, takes O(| children|) space, but no ordering on children
- SKkip list: test existence in O(log | children |) time, takes O(| children |) space

= |n practice, varies depending on the depth of the node

Size. It takes O(| S \2) space, hence so does the DFS steps...
=» A 10M bp genomes would require ~300 TB to store (hodes + labels + links)

Outline 14

Suffix trees

Compacting the suffix tree

Merging non-branching paths.

starting position of the suffix
01 23 456

B A (starting position of a covered suffix)
o/N:\s\$. Bl AN depth in the suffix trie
? 9
BR NA $
= - Ins

$
:\. .NA$ O LA o Lo .\.3
| .$/' A ; _
'\.

Z

At most 2| S| — 1 nodes (all internals are branching)

Construction from Suffix Trie in O(| S?|) with a DFS _

OCZ(M 7 V) — S[l -)[depth(u)..depth(v))
with 7 the starting position of any covered leaves of v
Construction from Suffix Trie in O(| SZ|) with a DFS

Definition. The suffix tree of a string S is the compacted version of the suffix trie of 3.
—> O(|S| - €(children)) space

Typically, | X2 |

The DFS is now O(|S|) and, even better, O(#leaves)

output size!

Outline 16

A linear time construction (flavors of)

Leverage the fact that we are inserting suffixes within the compacted trie

Definition (suffix link). The suffix link u — v is such that S is the longest proper suffix of S ,.

S, =Sli.jl= 8, =[i+1.j]

$ ~
6 | a na
87/ T uns
$5 e na$ 4
3 na$ banana$;
: 0

Proposition. If the leaf that correspond to the suffix S[i . .] is attached to an internal node u;, then slink(u,) is

a prefix of S[i+1..]. Hence, the insertion can start from this point (instead of starting from the root).

Rq. If suffixes are taken in order, the suffix link always links to an
existing point in the tree.

- —wslink(u;) ' Consequence By showmg that slink can ecputezl—whlle |sr|g
|

1 prefixes, and by performing a rigorous complexity analysis, one can show ‘
that the suffix tree can be computed |n Imear t|me

—_—

Outline 17

Pattern matching in the suffix tree (Membership)

Algorithm 5: Membership on suffix trie

Input: The suffix trie STg of S, a pattern P
Output: Whether P is a substring of .S, or not

. node < root(STs)

2: fori € [0..|P|)do

3: if child(node, Py;;) doesn’t exists then
4 return False

5: node < child(node, Py;))

6: return True

Eg. Searching for "ANAN"

Outline

Algorithm 7: Membership on suffix tree

Input: The suffix tree STg of S, a pattern P
Output: Whether P is a substring of S, or not

r u 4 root(STs)

=
Q

II:

Vo © N &N v A w oD

. fori € [0..|P|) do

> If we are at a branching node, branch as dictated by the prefix (if possible) <
> Otherwise, check the characters that arve on the branch q
if i > depth(node) then

if child (u, Py;) doesn’t exists then

 return False

u < child(u, Py;)

else

if S [someCoveredLeaf (u)-+1i] 7é P [] then
| return False

12: return True

0123 456
BANANAS

18

Size.

- Depends on the alphabet... (O(|S| - € (children)))

- Quite big in reality (many information stored at the level of node)

- So big the linear time construction is not practical: jumping to unrelated part of the tree is not
"fact constant-time", because of cache locality

Outline 19

Suffix arrays

Suffix array

Deflnltlon (Suffix array)

- - — e = —_——

The suffix array of a string S is the array of the | S| + 1 startlng positions of the

lexicographically sorted suffixes of S$, where the termination symbol is smaller than all
other letters.

—

e = - = ——— . R — R —

$ (6)

AS (5)
3
S = BANANAS = ANAnas | = SAs=16,5,3,1,0,4,2]
o BANANA$ (0) —> O(|S|) space (no | 2| dependancies)
NAS (4)
NANAS$ (2)

Construction.
[1] Sorting suffixes. Naively, this takes O(|S|*log|S|) time.

[2] From the suffix tree. Retrieve the leaves with an (ordered) DFS, in overall (non-efficient) O(|S|) time.
[3] Direct fast construction. Cf. literature (linear time).

Outline

21

Pattern matching with the suffix array

Key idea. If a pattern P is a substring of a string S, its occurrences are contiguous in SAg.

Algorithm 9: Pattern matching with the suffix array
Input: The suffix array SAg of a string S, a pattern P

r first < BinarvSearcH(P,SAg,First)

2. return True iff first # L > Membership
3: last < BinarvSearce(P,SAg,Last)

4: returnlast — first + 1 if the makes sense, 0 otherwise > Count
s: return SA(pirst 1ast) if makes sense, 0 otherwise > Locate

— O(|P|log|S|+ |out|) time

o - —_— —— ;‘j

=
!

| I~
' What do you think of this bound? {‘

= — ——— —_ - e

Eg. On random strings, the expected comparison time (for one step of the search) is O(1)

Outline 22

LCP-fastened comparison

Let: . and i, . be the indexes manipulated during the binary search.

Observation 1. The characters comparison between the pattern P and the mid-word SAg[|(i,;, + 7,..,,.)/2]] will

correspond to equalities on the first | lcp(SAgli,,.. 1, SAsli,..]) | characters.

Observation 2. It holds that

min-

le(SAS 1], SAS _lmax])

L mid-

1ep(SAi - 1. SAdi ..
ICP(SAS[imin]’ SAS[imax]) = min { Cp(SLE S:l.mzd])

Can be computed jointly with word comparison

Algorithm 10: Comparing strings with /cp length

Input: Two strings S and S’, a lower bound £ on the length of lcp(.S, S”)
Output: An order of S and S, together with | lcp(.S, S”)|

i1 L+1

2: while i < min{|S]|, |S’|} do

3 if S[z'] # sz] then

4 ‘ return (">",4 — 1) or ("<",i — 1)

5 141+ 1

6: return (">" i —1),("<",i —1),o0r ("=",7 — 1) > Comparing |S| and | 5’|

Note. There exists an algorithm that runs in better O(| P | 4+ log|S|) time in the worst-case, but it is less practical.

Outline 23

Enhancing the suffix array

Idea. The suffix array is just the leaf order of the suffix tree. To make is useful beyond simple pattern matching, we need other
arrays to completely capture the tree topology.

Deflnltlon (LCP array)

' This is the array defined by LCPS[z] = |lcpS[SAS[1]) S
N, T oAst s

= Allows for queries such as longest repeated subsequence

Construction.
[1] Naive. This takes O(| S|*) time.

[2] From the suffix tree. Retrieve it with an (ordered) DFS, in overall (non-efficient) O(|S |) time.
[3] Direct fast construction. Cf. literature (linear time).

And beyond.

Replacing suffix trees with

enhanced suffix arrays In this-article, we will overcome this obstacle. We will show how

every algorithm that uses a suffix tree as data structure can systematically be replaced with an algo-

Mohamed Ibrahim Abouelhoda?, Stefan Kurtz®, rithm that uses an enhanced suffix array and solves the same problem in the same time complexity.
Enno Ohlebusch **

Outline 24

Part PS-B

Preprocessing string - Searching compressed sequences

Motivation

A far-fetched remarkable instance. Pattern matching over homopolymers:

— Algorithm 11: Pattern matching on homopolymers
Input: A string S made of a single (repeated) letter, a pattern P |

v letter « Spg —> O(|P|) time and constant space

2: if P is only made of letter then

3 | return True > for Membership Intuition. Possible because S can be
+ | retum|S| - |P|+1 > for Count descrlbed with only O(1) Characters'
s: | return [0..|S| — |P| +1) > for LocateAll R ~ e e,

]l

Entropy-based compression is not enough.

bits(entrComp(S")) ~

while

FZ(S") <

Kolmogorov complexity. Size of the smallest program that generates the argument

Repetitive strings call for dedicated compression methods

Outline 26

The Burrows-Wheeler transform

The Burrows-Wheeler transform

Deflnltlon (Burrows-WheeIer transform)

—

- symbol $ is smaller than any other letter

L _— - —E— —— — = =S —_— e —

$acaacg $acaacg
aacg$ac aacgSac
acaacg$ acaacgs$
acaacg$ —>acg$Saca —> acg$Saca—>gcS$aaac
T caacg$a caacg$a BWT(T)
cg$acaa cg$acaa
gS$acaac gSacaac

Burrows Last column
Wheeler

Matrix

Idea. The order of the sorted rotations of S is the order of the sorted suffixes of .

Definition (Burrows-WheeIer transform, bls)

\ The BWT of a string S s the array of Iength \S \ + |ven by

if SA¢[i] > 0

otherwise

| BWTS[Z] _ {S[SAs[l] — 1]

—_———— - =

Outline

e IEEEESSS. —

. The BWT of a strlng IS the strlng corresponding to the Iast Column of the matrlx whose
rows are the | S| + 1 rotations of S$ sorted lexicographically, where the termination l

— O(|S|*log(|S])) time

construction using O(| S |2) space

Room for improvement...

—> O(|S|) space and time

construction
28

Compression capabilities of the BWT

Idea. If a pattern aX is repeated in S, the BWT region that correspond to the X chunk will contains many a's.

— only a few "character changes" in the region

aX bX
I [1 |

Two compression techniques (that can be combined).

AAAAAAAATTTTTTAAAACCCCCCCCCCGGGGGGG — A8.T6.A4.C10.G6

Encode repeated letters with smaller integers

INEFFICIENCIES: 8.13.4.5.5.8.2.8.4.13.2.8.4.18 — 8.13.6.7.0.3.6.1.3.4.3.3.3.18

“Letters are a list: when a letter is seen, bring is to the front

Outline 29

Inverting the BWT

Let S be such that BWT(S) = ANNBSAA.

ol

sorted 2-mers sorted 3-mers

Outline

b
““‘
) .f
’ “\
E = “
[
\
| |
\] \‘
i| |
l | B ANANA S|
[
\
|

Al
Al

— O(|S|-|S|*log|S|) time
O(lS 2) space
4-mers Room for improvement...

30

The LF-mapping

Lemma. For every character a, the i-th occurence of a in L and the i-th occurence of a in F correspond to the
same character in S.

First ‘ Last

Proof. Fora € 2, letaX < aY be two sufhixes of T'. Clearly, ordering of the suffixes
holdsif and only if X <|ex Y. So, there is a bijection from the suffixes that start with a and
those that are preceeded with a that preserves the relative order of these suffixes. []

Outline 31

Inverting the BWT, faster

Ve i
am
$IAl 3A
AN AN
N N
A
NI A NTA '
o~ . !
I NIA AI seems O(|S|) space

Algo (informal).

1] Let S = "'. Each time you see a new character in F, prepend it to S.
2] Put yourself at F's termination symbol

3] Repeat |S| times:

3.a] Go to the corresponding cell in L

3.b] Use the LF mapping to locate the current symbol within F

[4] Return S[:-1]

How to perform 3.b efficiently ?

Outline 32

The FM-Index

Rank array. The letter at position 7 in L is the R|i]-th of its kind:

R[] = #{j | j € [0..il, BWT(S),;; = BWT(S);;}

Cumulative count map. C[x] is the amount of letters of BWT(S) that are strictly smaller than x:

Clx] =#{j |j € [0..|S|+ 1), BWT(S);; <jex X}

Algorithm 13: Inverting the Burrow-Wheeler transform (fast)

Input: The FM-index (BWTg, R, C) of a string S.
Output: Thestring S such that BWTg = L

S "8 4w <+ 0

2: loop | S| times

3: prec < BWTg[i,0u]

s S« prec+S —> O(|S|) space and time!
s: | lpow < LEMAPPING(trow)

6: return §

rbhw=a2a2aa20 0)
| >>omzZzZ2>|
QQ[\)_L_LI\)_L_Lm

7: function LEMArrING(7)
8: — C[BWTgli|] + R[] — 1 > Ranks starts at | while indexes at 0 (hence —1

Outline 33

Pattern matching from the BWT

Pattern matching with the FM-index

We just did it (somehow). Inverting the BWT is recovering the longest suffix of S$ that ends with $.

Is "ANAN" present in "BANANA"? We look for matching interval, going right-to-left,

Formally,

Algorithm 14: Pattern matching on the BW transform
Input: The FM-index (BWTg, R, C) of a string S, a pattern P.

(4min> tmaz) < (C[P_1)], C[nextSmallestLetter(F_y;)] — 1)
if (imz'na imaa:) = 1 then
return False (resp. 0) > Membership (resp. Count)

. for k € [0..|P| — 1) in reverse order do

oldRange < [imin--tmaz]

imin < FIRsTOCCWriTHIN(Py, Llold Range])

imaz < LasTOccWiTHin(Py), Llold Rangel)

if (4min, tmaz) = L then

~ returnFalse (resp. 0) > Membership (resp. Count)
| (Tmins tmaz) < (CEMAPPING (Tymin), LEMAPPING (Tmin))

n: return True (resp. tmaz — %min + 1) > Membership (resp. Count)

Zzjo>>>o T
Formzz>

F L
$ A
A N |
$
N A
N A

Elew>>>0
Sponzz>

Yo @ N v AW b

L
Q

Yes, the pattern is present

It appears once

Its location can be recovered with SA

| o oreon o e e | — O(|P| - |S|) time

Outline 35

Trading space for time

Rank arrayS. The rank array is split by letters:

Outline

R [i]=#{j|j € [0.1], BWT(S)[]'] = X}
Algorithm 15: (better) Pattern matching on the BW transform
Input: The FM-index (BWTg, {R;}zex, C) of astring S, a pattern P.

 (4min, tmaz) < (C[P—1]], C[nextSmallestLetter (P_q;)] — 1)
if (min, tmaz) = L then

2:

3: \ ~ return False (resp. 0) > Membership (resp. Count)
4:

s: fork € [0..|P| — 1) in reverse order do

6: Tmin Rp[k] [imin — 1] +1

7¢ imaa: — RP[k] [imax]

8: if 260 > Tmaz then

o: ~ returnFalse (resp. 0) > Membership (resp. Count)
10: (trmins tmaz) < (LEMAPPING (4min), LEMAPPING (Gmin))

m: return True (resp. tmaz — %min + 1) > Membership (resp. Count)

= O(|P| + |out]) time

36

Real-life FM-Index

I. LF needs the rank of characters from the BWT
« Storing the rank of each character: too heavy (|B| bytes)
« Solution: rank subsampling - store checkpoints every N lines
— need the rank of all {A, C, G, T} characters
— the real rank is made by walking up or down the lines reaching a checkpoint

— at most I%J walks
— Bowtie: N = 448

Il. SA: too heavy (|B| bytes)
« Solution: SA subsampling — (every 32 positions in Bowfie)
— for each line kK in [i, j]:
» if line k marked: position = SA[K]
» else reversed walk until a marked position is found

FM index Bowtie memory balance

B

BWT: e bytes (2 bits per character, no need to have $ in some case)
B
rank: % - 4 bytes (4 letter’s rank, following lexical order)
, |B|
« SA: — bytes
32

Finally: ~0.29 - |B| bytes = 1.16 times the single storage of B (with 2 bits per character)

0.87 GB for the 3 billion characters human genome

Outline *Pierre Peterlongo's slides 27

Homeworks

Burrows-Wheeler transform

[1] Implement a working RLE (+MTF?) Burrows-Wheeler transform.
2] Try to compress a random string, and your favorite genome.

[3] Implement a FM-index class, able to answer membership/count/locate queries.

Pour ce TP, nous utiliserons une implémentation du tableau des suffixes disponible ici : http://
bioinformatique.rennes.inria.fr/tools_karkkainen_sanders.pyadaptédehttp://code.
google.com/p/pysuffix/.

Voici un exemple d’utilisation :

from tools_karkkainen_sanders import simple_kark_sort

sa = simple_kark_sort (s

Produira la sortie suivante :

Suffixes

$

ACCGCS

C$

CACCGCS
CCGCS$

CGCS$
CGGCACCGCS
GC$

QOO0 v

e OO WN K O -

=10) ¢

Pattern matching - again

Léo Ackermann

Part PS-C

Preprocessing string - Searching sketched sequences

Outline

Various genome representations.

Compressed genome Sketched genome

o/

Query (membership/count/locate) complexity around O(P + | output|)

Outline 41

Call for sketches

Modern laptop storage. Around 1 Terabyte

Modern genome storage demand.

- Bacterial genome: ~1MB

- Human genome: ~1GB

- BLAST nr/nt: ~1TB

- Tara Oceans DNA/RNA: ~60TB

- NCBI SRA (reads): ~32PB, and still x2 every two years

Today: efficient representation of k-mer sets for pattern matching

But many other bioinfo-relevant sketches exist!

Outline 49

Inverted Index

Inverted index

Definition (Inverted index).

e — S —_— =

A k-mer index of a string § is a data structure that represents occurrence lists Oy for 1
each k-mer presentin §:1 € Oy & 5; ;14 = K.

=

— = — —

e - e __|

How to query general queries?

5 = ATTCGATTCCGAT If |g| < k. Easy, just find first/last match as in SA.

ATT — [O, 5] If |g| > k. Combinatorial explosion or seed-extend
CCG — [8]

LGA — [3’ 9] query set of k-mers

GAT — [4, 10] Query. Takes O(k - log | Z | + | output|) time

TCC —> [7]

TCG —> [2] Space. Takes 2k bits per k-mer, and | S| bytes for positions

TTC — [1, 6]

k-mer index of S

Outline 44

Hash functions

Intuition. There are way less than 4°! distinct 31-mers in a typical genomic string S. Storing them explicitly using 2k
bits per k-mer is ineffective.

Would be nice to have f: # C [0..4°'] = [0..0(| Z |)].

For f to be a good hash function.
- Efficiently computable (and storable)

- Bijective (or so: cases where x # y but f(x) = f(y) are called collisions)

Naturally, tradeoff between efficiency and size of range for a given probability of collision!

Outline 45

Inverted index - hash based

S = ATTCGATTCCGAT

hash function #

ATT 4 — [0, 3] T T
~Algo. Query g of leng *
LG 8 — (8] | 1. Leth = #(q)
gi'_?_\ 1? [[j’ ?1)] B Look for /1 in the k-mer index | "
— [4, —
TCC 13 — [7] Note: the hash function breaks the
TCG \ 14 —> [2] contiguity we relied on for smaller queries
TTC 16 — [1, 6]

k-mer index of §

Outline e

Filters

S e "i

A filter approximately represents a set. It must support entry insertions and queries. L
Additionally, it might also support entry deletion, or filters union/intersection operations. |

| _ _ , _ ,) i __|

= _— — — — - — — = —— — e — _— — = »

False positive are allowed False negative are (typically) not allowed

as they typically just waste some work

Eg. filtering low-abundant k-mers

Today.
- Bloom filters
- Cuckoo filters
- Quotient filters

Outline 48

Bloom filter // Definition

1 The Bloom filter only supports probablllstlc (only FP can happen) membership queries. It
represents a set of n elements using a bit array B of size m, and k distinct hash functions. |

Deflnltlon (Bloom F|Iter)

— — —- — — —— = - — — —— — . —_ _

]
i

Insert(B, e). Foralli € [1..k], let B[A(e)] = 1
Query(B, e). Check that it holds for all i € [1..k] that Blh(e)] = 1 L

Example (m=15, k=3).

Outline

Bloom filter - Example (query)

» m=15bits, k=3 hash fun

ACGTAC CAGTCT TTTCAC

W\

Q ery : GGGAAA
Answer : Yes (false positive)

30

49

Bloom filter // Choosing parameters

Probability of FP. Let assume that hash functions are random and independent.

. P(B[i] is not set to 1 during insertion) = (1 — 1/m)* = ((1 — 1/m)™K™ ~ e~k

. P(B[i] is still 0 after n insertions) =~ (e XMy

. P(B[i]is 1 after n insertions) =~ 1 — e */m
. P(eis FP) = P(Ni,B[Z (e)] = 1) =~ (1 —e rimy

Choice of parameters. For fixed values of n and € (FP probability), one can derive the optimal values for the

scheme:

nlne
m = and k=m/n-In2
(In2)?

Outline B

Bloom filter // Counting variant

Idea. Store x bits integers instead of bits in B. Increment counters when inserting.

counting Bloom filter

1oJo[2[o]o[o[o]4[o]0 EEEIEEE

Two flavors.
Insert_1(B, e). Forall i € [1..k], let B[h.(e)] = (Blh(e)] + 1) % x

Insert_2(B, e). For all i € [1..k] that minimize B[h(e)], let B[h(e)] = (B[h(e)] + 1) %o x

Query(B, e). Return min B[A(e)]

[exo] Compare these variants

Outline 51

Bloom filter // Hierarchical variant (union)

Idea. Propagate Bloom filters bottom-up to quickly identify documents of interest

Are > O fraction of query
kmers e this Bloom filter?

_ z..

If YES, move to children

Bl filt
com e It NO, stop looking

at this subtree
(Global mismatch)

SRA 00001 SRA 00002 SRA 00003 SRA00004 SRAO00005 SRA00006 SRA00007 SRA 00008

X X v X X X X X

Credit: B. Solomon

Outline 52

Quotient filter // Motivation

Idea. Bloom filters uses multiple hash functions to prevent collisions, but...

‘ Lemma (blrthday paradox) The expected number of samples to take from [O .n] before observmg a ‘

collision is \/n/2 n = @(\/_).

=> the array is far from being full when this problematic arises

Outline 53

Quotient filter // Definition

H =

quotient = where to insert in Q

Idea. Use neighboring cells instead of a mv hash function

| 01132 | 21609 | | 31402
21859 | . . S
l 859 is both shifted and part of a run (collision with 609)
l v 402 would be inserted here so this bucket is occupied
1001000120 |012|2(2)10(O0(2)10(0]06
132 609 859 402
Collision but 609 is in its canonical slot I I 402 was shifted from its canonical slot
so is_occupied is set by 609 and 859

is_continuation

:

is_occupied —» <+— 1is_shifted

Also support deletions!

Outline 54

Cuckoo filter // Definition

Definition (Cuckoo filter).

R A— ——— = = — — = — s—

The Culckoo filter supports Brobabilistic (only FP can happen) membersip quries It J
represents a set of n elements using an array C of size m, each cell made of f bits. It

‘requires three hash functions: h and mv ranging in [0..m), and fgp ranging in [0..f). |
~quotient ~remainder fe Qlogn) ’

Insert(B, e).
1.Try to put fgp(e) within C[A(e)]
2. If the cell wasn't empty, put fgp(e) in C[h(e) & mv(fgp(e))]. '

3. If a value y was there, move it to C[h(e) + mv(fgp(e)) + mv(y)], and so on.

L

|

B is almost filled when this procedure fails => space gain

Query(B, e). Check whether fgp(e) indeed lives within C[Ah(e)] or Clh(e) @ mv(fgp(e))] |

You can delete such an entry! |

Going further: https://www.cs.cmu.edu/~binfan/papers/conext14 cuckoofilter.

Outline 55

https://www.cs.cmu.edu/~binfan/papers/conext14_cuckoofilter.pdf

Homeworks

Bloom filter

[1] Implement a working Bloom filter.

To implement a Bloom Filter you will need to compute a certain number of hash functions. In order to do

that, you can use the Python library mmh3 (you can install the package using conda) The next few lines
illustrate a usage example:

import mmh3

nb _hashes = 7

size_max = 100000000

item = "ACGGACGACGACT"

for seed in range (nb_hashes):
key = mmh3.hash(item, seed, signed=False) % size_max
print (f"Seed {seed} 1s {key}")

2] Implement the counting variant(s). Recompute kmer histograms from last sessions
using this new data structure.

