
Léo Ackermann

BOX
Pattern matching

Pattern matching

Pattern matching 2

Input: a string and a pattern

Output (Membership): whether appears in as a substring

Output (Count): the number of occurrences of in

Output (LocateAll): the starting positions of in , that is the 's such that

S P
P S

P S
P S i S[i..i+|P|) = P

Definition (Pattern matching variants).

Intuition. Looking for a given pattern within a given string.

Naive approach.

harder than

 time𝒪(|S | ⋅ |P |)

Pattern matching as a routine task

Pattern matching 3

Motivation. Pattern matching is rarely an isolated task

[A] Preprocessing pattern, for a instance list((P, Si))i∈ℕ

1. Sequence sick persons' genomes

2. Locate the virus (fixed pattern) within the latter

3. Look whether/how the virus evolved

Application. Epidemic surveillance

[B] Preprocessing genome, for a instance list((Pi, S))i∈ℕ

1. Search for specific sequences, tandem repeats, palindromes, ...

Application. In-depth study of a genome

1. Sequence a human genome

2. Search for fragments within preprocessed reference genomes (whose conditions are known)

3. Aggregate and diagnose

Application. Genetic condition diagnosis

Today's program

Outline

Outline 4

Genome Compressed genome Sketched genome

Space requirements

Information

Query (membership/count/locate) complexity around 𝒪(P + |output |)

Various genome representations.

Part PS-A
Preprocessing string - Searching with suffixes

Main observation

Outline 6

Key idea. A pattern is a substring of a string iff is the prefix of a suffix of .P S P S

S
P

Prefix matching (easier) in the suffixes of P, simultaneously

Suffix tries

Tries

Outline 8

A trie that represent a set of strings is a tree of at most leaves and marked

nodes whose edges are labeled by letters of and such that:

- (membership) iff spells a path from the root to a marked node

- (compaction 1) Outgoing edges of a given nodes are decorated by different letters

- (compaction 2) Every leaf is marked

𝒮 |𝒮 | |𝒮 |
Σ

S ∈ 𝒮 S

Definition (Trie).

Trie of {knight, knife, kind, king, kingdom}

Membership (algo).

Build (algo).

Try to unroll the word from the root of the tree.

 space and time⟹ 𝒪(∑
S∈𝒮

|S |)

 time⟹ 𝒪(|S |)

Suffix tries

Outline 9

Naive idea. The suffix trie of is the trie of its suffixes.S

B
A
N
A

A
N

N

A

A
N

N

A

A
N

A
PROBLEM. eg. ST("BANANA")

Not all suffixes are created equal!

The suffix tree of is the trie of the suffixes of , where is a fresh symbol that doesn't

appear in , called the termination symbol.

S S$ $
S

Definition (Suffix trie).

B
A
N
A

A
N

N

A

A
N

N

A

A
N

A

eg. ST("BANANA")

$

$

$

$

$

$

 space⟹ 𝒪(|S |2)

 time to build⟹ 𝒪(|S |2)

Pattern matching in suffix tries (Membership)

Outline 10

B
A
N
A

A
N

N

A

A
N

N

A

A
N

A

$

$

$

$

$

$

Eg. Is "AN" a substring of "BANANA"? what about "NAB"?

X

B

 time⟹ 𝒪(|P | ⋅ 𝒞(∃?child))

Pattern matching in suffix tries (Count)

Outline 11

Eg. How many times "AN" appears as a substring of "BANANA"?

B
A
N
A

A
N

N

A

A
N

N

A

A
N

A

$

$

$

$

$

$
Two occurrences

$
S
occ1

occ2

Algo.

 time⟹ 𝒪((|P | + |S |2) ⋅ 𝒞(child))

Improvement.
 time⟹ 𝒪((|P |) ⋅ 𝒞(child))

Preprocess "countCoveredLeaves" in time𝒪(|S |2 ⋅ 𝒞(child))
Store the results at the level of tree nodes

Pattern matching in suffix tries (LocateAll)

Outline 12

Eg. Where are the starting positions of the "AN" pattern in "BANANA"?

B
A
N
A

A
N

N

A

A
N

N

A

A
N

A

$

$

$

$

$

$

$
S
occ1

occ2

ji

Stored at node level

Stored at node level
Computed during "Build ST"

 time⟹ 𝒪((|P | + |S |2) ⋅ 𝒞(child))

Other method (same time complexity). Starting position = end position - depthNode

B

A
N
A

A
N

N

A

A
N

N

A

A
N

A

$

$

$

$

$

$

$

$

S

S

$

$

S

S

S

$

eg. ST("BANANA") ST("ANANAS")∪

Beyond pattern matching

Outline 13

A few examples.
Longest repeating factor

Hotspots for recombination

Transposable elements

B
A
N
A

A
N

N

A

A
N

N

A

A
N

A

$

$

$

$

$

$

Deepest node

that covers

multiple leaves

Shortest substring occurring only once
Find good PCR primers

B
A
N
A

A
N

N

A

A
N

N

A

A
N

A

$

$

$

$

$

$

Highest node that covers a single leaf

Longest common subsequence
Local alignment

Deepest "green"

node

Limits

Outline 14

Children storage.

- Array: test existence in time, takes space

- List: test existence in time, takes space

- Dictionary: test existence in time, takes space, but no ordering on children

- Skip list: test existence in time, takes space

𝒪(1) 𝒪(|Σ |)
𝒪(|children |) 𝒪(|children |)

𝒪(1) 𝒪(|children |)
𝒪(log |children |) 𝒪(|children |)

In practice, varies depending on the depth of the node

Size. It takes space, hence so does the DFS steps...𝒪(|S |2)
A 10M bp genomes would require ~300 TB to store (nodes + labels + links)

Suffix trees

Compacting the suffix tree

Outline 16

Merging non-branching paths.
B

A
N
A

A
N

N

A

A
N

N

A

A
N

A

$

$

$

$

$

$
At most nodes (all internals are branching)2 |S | − 1
Construction from Suffix Trie in with a DFS𝒪(|S2 |)

Problem. Storing labels is still 𝒪(|S2 |)

BANANA$
NA
NA$

NA

NA$

A

$
$

$
0

4

2
1

3

52
1

3
(4)

(1)

(1)

B A N A N A $
0 1 2 3 4 5 6

starting position of the suffix
(starting position of a covered suffix)
depth in the suffix trie

Solution. Recompute them on the fly
ℒ(u → v) = S[i . .)[depth(u)..depth(v))

with the starting position of any covered leaves of i v

Definition. The suffix tree of a string is the compacted version of the suffix trie of .S S
 space⟹ 𝒪(|S | ⋅ 𝒞(children))

Typically, |Σ |

Crucial observation. The DFS is now and, even better, 𝒪(|S |) 𝒪(#leaves)
output size!

Construction from Suffix Trie in with a DFS𝒪(|S2 |)

A linear time construction (flavors of)

Outline 17

Definition (suffix link). The suffix link is such that is the longest proper suffix of .u → v Sv Su
Su = S[i . . j] ⟹ Sv = [i + 1..j]

Leverage the fact that we are inserting suffixes within the compacted trie

Proposition. If the leaf that correspond to the suffix is attached to an internal node , then is

a prefix of S[i+1..]. Hence, the insertion can start from this point (instead of starting from the root).

S[i . .] ui slink(ui)

Consequence. By showing that slink can be computed while inserting

prefixes, and by performing a rigorous complexity analysis, one can show

that the suffix tree can be computed in linear time.

Rq. If suffixes are taken in order, the suffix link always links to an

existing point in the tree.

Eg. Searching for "ANAN"

BANANA$
NA

NA$
NA

NA$

A

$
$

$

0

4

2

1

3

52

1

3

(4)

(5)

(1)

AB
N

N

N

$

$≡

Pattern matching in the suffix tree (Membership)

Outline 18

≡

A

NA

NA

B A N A N A $
0 1 2 3 4 5 6

Size.
- Depends on the alphabet... ()

- Quite big in reality (many information stored at the level of node)

- So big the linear time construction is not practical: jumping to unrelated part of the tree is not  

"fact constant-time", because of cache locality

𝒪(|S | ⋅ 𝒞(children))

Limits

Outline 19

Suffix arrays

Suffix array

Outline 21

The suffix array of a string is the array of the starting positions of the  
lexicographically sorted suffixes of , where the termination symbol is smaller than all 
other letters.

S |S | + 1
S$

Definition (Suffix array).

S = BANANA$
0 1 2 3 4 5 6

SAS = [6, 5, 3, 1, 0, 4, 2]
BANANA$
ANANA$
ANA$
A$

NA$
NANA$

$ (6)
(5)
(3)
(1)
(0)
(4)
(2)

 space (no dependancies)⟹ 𝒪(|S |) |Σ |

Construction.
[1] Sorting suffixes. Naively, this takes time.

[2] From the suffix tree. Retrieve the leaves with an (ordered) DFS, in overall (non-efficient) time.

[3] Direct fast construction. Cf. literature (linear time).

𝒪(|S |2 log |S |)
𝒪(|S |)

Pattern matching with the suffix array

Outline 22

Key idea. If a pattern is a substring of a string , its occurrences are contiguous in .P S SAS

 time⟹ 𝒪(|P | log |S | + |out |)

What do you think of this bound?

BANANA$
ANANA$
ANA$
A$

NA$
NANA$

$ (6)
(5)
(3)
(1)
(0)
(4)
(2)

first

last

Very pessimistic! Way better in practice :)

Eg. On random strings, the expected comparison time (for one step of the search) is 𝒪(1)

LCP-fastened comparison

Outline 23

Note. There exists an algorithm that runs in better time in the worst-case, but it is less practical.𝒪(|P | + log |S |)

Observation 1. The characters comparison between the pattern and the mid-word will

correspond to equalities on the first characters.

P SAS[⌊(imin + imax)/2⌋]
| lcp(SAS[imin], SAS[imax]) |

Let and be the indexes manipulated during the binary search.imin imax

Observation 2. It holds that

lcp(SAS[imin], SAS[imax]) = min {
lcp(SAS[imin], SAS[imid])
lcp(SAS[imid], SAS[imax])

Can be computed jointly with word comparison

Enhancing the suffix array

Outline 24

This is the array defined by LCPS[i] = | lcp(S[SAS[i]..), S[SAS[i+1]..)) |
Definition (LCP array).

Idea. The suffix array is just the leaf order of the suffix tree. To make is useful beyond simple pattern matching, we need other

arrays to completely capture the tree topology.

Construction.
[1] Naive. This takes time.

[2] From the suffix tree. Retrieve it with an (ordered) DFS, in overall (non-efficient) time.

[3] Direct fast construction. Cf. literature (linear time).

𝒪(|S |2)
𝒪(|S |)

Allows for queries such as longest repeated subsequence

And beyond.

Part PS-B
Preprocessing string - Searching compressed sequences

Motivation

Outline 26

A far-fetched remarkable instance. Pattern matching over homopolymers:

 time and constant space⟹ 𝒪(|P |)

Entropy-based compression is not enough.

#bits(entrComp(Sn)) ≈ n ⋅ #bits(entrComp(S))
while

𝒦(Sn) ≤ 𝒦(S) + 𝒪(log n)
Kolmogorov complexity. Size of the smallest program that generates the argument

Intuition. Possible because can be

described with only characters!

 is highly compressible

S
𝒪(1)

S

Repetitive strings call for dedicated compression methods

The Burrows-Wheeler transform

The Burrows-Wheeler transform

Outline 28

The BWT of a string is the string corresponding to the last column of the matrix whose

rows are the rotations of sorted lexicographically, where the termination

symbol is smaller than any other letter

|S | + 1 S$
$

Definition (Burrows-Wheeler transform).

 time
construction using space

⟹ 𝒪(|S |2 log(|S |))
𝒪(|S |2)

Room for improvement...

Idea. The order of the sorted rotations of is the order of the sorted suffixes of . S S

The BWT of a string is the array of length given by:
S |S | + 1

BWTS[i] = {S[SAS[i] − 1] if SAS[i] > 0
$ otherwise

Definition (Burrows-Wheeler transform, bis).

 space and time
construction

⟹ 𝒪(|S |)

Compression capabilities of the BWT

Outline 29

Idea. If a pattern is repeated in , the BWT region that correspond to the chunk will contains many 's.

 only a few "character changes" in the region

aX S X a
⟶

S

aX bX

BWT matrix

BWT

Two compression techniques (that can be combined).
Run-length encoding

AAAAAAAATTTTTTAAAACCCCCCCCCCGGGGGGG A8.T6.A4.C10.G6⟶

Move-to-front Encode repeated letters with smaller integers

INEFFICIENCIES: 8.13.4.5.5.8.2.8.4.13.2.8.4.18 8.13.6.7.0.3.6.1.3.4.3.3.3.18⟶
*Letters are a list: when a letter is seen, bring is to the front

Inverting the BWT

Outline 30

Let be such that .S BWT(S) = ANNB$AA

A

N

N

B

$

A

A

A

N

N

B

$

A

A

??

1-mers

A

N

N

B

$

A

A

$

A

A

A

B

N

N

sorted 1-mers

2-mers 3-mers 4-mers

A

N

N

B

$

A

A

$

A

A

A

B

N

N

B

$

N

N

A

A

A

sorted 2-mers

B

$

N

N

A

A

A

A

B

A

A

N

$

N

A

N

N

B

$

A

A

$

A

A

A

B

N

N

sorted 3-mers

B A N A N A

...

 time
 space

⟹ 𝒪(|S | ⋅ |S |2 log |S |)
𝒪(|S |2)

Room for improvement...

The LF-mapping

Outline 31

Lemma. For every character , the -th occurence of in L and the -th occurence of a in F correspond to the

same character in .

a i a i
S

A

N

N

B

$

A

A

$

A

A

A

B

N

N

F Lirst ast

A

N

N

B

$

A

A

$

A

A

A

B

N

N

F Lirst ast

1

1

1

1
1

1
1

1
2

2

2

2

3

3

Inverting the BWT, faster

Outline 32

Algo (informal).

[1] Let S = ''. Each time you see a new character in F, prepend it to S.

[2] Put yourself at F's termination symbol

[3] Repeat |S| times:

[3.a] Go to the corresponding cell in L

[3.b] Use the LF mapping to locate the current symbol within F

[4] Return S[:-1]

 space!⟹ seems 𝒪(|S |)

How to perform 3.b efficiently ?

The FM-index

Outline 33

Rank array. The letter at position in L is the -th of its kind:i R[i]

Cumulative count map. is the amount of letters of that are strictly smaller than :C[x] BWT(S) x

A

N

N

B

$

A

A

$

A

A

A

B

N

N

F L

R[i] = #{j ∣ j ∈ [0..i], BWT(S)[j] = BWT(S)[i]}

R
1

1

2

1

1

2

3

C[x] = #{j ∣ j ∈ [0.. |S | + 1), BWT(S)[j] ≺lex x}

C
0

1

1

1

3

4

4

 space and time!⟹ 𝒪(|S |)

Pattern matching from the BWT

Pattern matching with the FM-index

Outline 35

We just did it (somehow). Inverting the BWT is recovering the longest suffix of that ends with .S$ $

A

N

N

B

$

A

A

$

A

A

A

B

N

N

F L

Is "ANAN" present in "BANANA"? We look for matching interval, going right-to-left,

A

N

N

B

$

A

A

$

A

A

A

B

N

N

F L
A

N

N

B

$

A

A

$

A

A

A

B

N

N

F L Formally,

Yes, the pattern is present

It appears once

Its location can be recovered with SA
 time⟹ 𝒪(|P | ⋅ |S |)

Trading space for time

Outline 36

Rank arrayS. The rank array is split by letters:

Rx[i] = #{j ∣ j ∈ [0..i], BWT(S)[j] = x}

 time⟹ 𝒪(|P | + |out |)

Real-life FM-index

Outline 37*Pierre Peterlongo's slides

Homeworks
Burrows-Wheeler transform

[1] Implement a working RLE (+MTF?) Burrows-Wheeler transform.

[2] Try to compress a random string, and your favorite genome.

[3] Implement a FM-index class, able to answer membership/count/locate queries.

Léo Ackermann

BOX
Pattern matching - again

Part PS-C
Preprocessing string - Searching sketched sequences

Outline

Outline 41

Genome Compressed genome Sketched genome

Space requirements

Information

Query (membership/count/locate) complexity around 𝒪(P + |output |)

Various genome representations.

(multi)-set of k-mers

Call for sketches

Outline 42

Modern laptop storage. Around 1 Terabyte

Modern genome storage demand.

- Bacterial genome: ~1MB

- Human genome: ~1GB

- BLAST nr/nt: ~1TB

- Tara Oceans DNA/RNA: ~60TB

- NCBI SRA (reads): ~32PB, and still x2 every two years

But many other bioinfo-relevant sketches exist!

Today: efficient representation of k-mer sets for pattern matching

Inverted index

Inverted index

Outline 44

ATTCGATTCCGATS =

ATT [0, 5]⟶
CCG [8]⟶
CGA [3, 9]⟶
GAT [4, 10]⟶
TCC [7]⟶
TCG [2]⟶
TTC [1, 6]⟶

k-mer index of S

A k-mer index of a string is a data structure that represents occurrence lists for

each k-mer present in : .

S OK
S i ∈ Ok ⇔ S[i..i+k) = K

Definition (Inverted index).

Query. Takes time𝒪(k ⋅ log |𝒦 | + |output |)
set of k-mersquery

Space. Takes bits per k-mer, and bytes for positions2k |S |

Can we do better?

How to query general queries?

If . Easy, just find first/last match as in SA.|q | < k
If . Combinatorial explosion or seed-extend|q | > k

Hash functions

Outline 45

Intuition. There are way less than distinct 31-mers in a typical genomic string . Storing them explicitly using

bits per k-mer is ineffective.

431 S 2k

Would be nice to have .f : 𝒦 ⊊ [0..431] → [0..𝒪(|𝒦 |)]

For to be a good hash function.

- Efficiently computable (and storable)

- Bijective (or so: cases where but are called collisions)

f

x ≠ y f(x) = f(y)

Naturally, tradeoff between efficiency and size of range for a given probability of collision!

Inverted index - hash based

Outline 46

ATTCGATTCCGATS =

 4 [0, 5]⟶
 8 [8]⟶
 9 [3, 9]⟶
 12 [4, 10]⟶
 13 [7]⟶
 14 [2]⟶
 16 [1, 6]⟶

k-mer index of S

ATT
CCG
CGA
GAT
TCC
TCG
TTC

hash function ℋ

Algo. Query of length

1. Let

2. Look for in the k-mer index

q k
h = ℋ(q)

h

Note: the hash function breaks the
contiguity we relied on for smaller queries

Filters

Filters

Outline 48

A filter approximately represents a set. It must support entry insertions and queries.

Additionally, it might also support entry deletion, or filters union/intersection operations.

Definition (Filter).

False positive are allowed False negative are (typically) not allowed
as they typically just waste some work

Eg. filtering low-abundant k-mers

Today.

- Bloom filters

- Cuckoo filters

- Quotient filters

Bloom filter // Definition

Outline 49

The Bloom filter only supports probabilistic (only FP can happen) membership queries. It

represents a set of n elements using a bit array B of size m, and k distinct hash functions.

Definition (Bloom Filter).

Insert(B, e). For all , let i ∈ [1..k] B[hi(e)] = 1
Query(B, e). Check that it holds for all that i ∈ [1..k] B[hi(e)] = 1

Example (m=15, k=3).

22

Bloom filter - Example (insertion)

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

▪ m = 15 bits, k = 3 hash functions

ACGTAC

23

Bloom filter - Example (insertion)

0 1 0 0 0 1 0 0 1 1 0 0 1 0 0

▪ m = 15 bits, k = 3 hash functions

ACGTAC CAGTCT

24

Bloom filter - Example (insertion)

0 1 0 0 0 1 0 0 1 1 0 0 1 0 1

▪ m = 15 bits, k = 3 hash functions

ACGTAC CAGTCT TTTCAC

28

Bloom filter - Example (query)

0 1 0 0 0 1 0 0 1 1 0 0 1 0 1

▪ m = 15 bits, k = 3 hash functions

ACGTAC CAGTCT TTTCAC

Query : CAGTCT
Answer : Yes

26

Bloom filter - Example (query)

0 1 0 0 0 1 0 0 1 1 0 0 1 0 1

▪ m = 15 bits, k = 3 hash functions

ACGTAC CAGTCT TTTCAC

Query : TTTAAT
Answer : No

30

Bloom filter - Example (query)

0 1 0 0 0 1 0 0 1 1 0 0 1 0 1

▪ m = 15 bits, k = 3 hash functions

ACGTAC CAGTCT TTTCAC

Query : GGGAAA
Answer : Yes (false positive)

Bloom filter // Choosing parameters

Outline 50

Probability of FP. Let assume that hash functions are random and independent.

•

•

•

•

P(B[i] is not set to 1 during insertion) = (1 − 1/m)k = ((1 − 1/m)m)k/m ≈
m→∞

e−k/m

P(B[i] is still 0 after n insertions) ≈
m→∞

(e−k/m)n

P(B[i] is 1 after n insertions) ≈
m→∞

1 − e−kn/m

P(e is FP) = P(∀i, B[ℋi(e)] = 1) ≈
m→∞

(1 − e−kn/m)k

Choice of parameters. For fixed values of n and (FP probability), one can derive the optimal values for the

scheme:

 and

- The number of hash function only depends on the target FP probability

- The length of a "good" Bloom filter is still proportional to the number of elements it contains

ε

m = −
n ln ε
(ln 2)2

k = m/n ⋅ ln 2

Bloom filter // Counting variant

Outline 51

Idea. Store x bits integers instead of bits in B. Increment counters when inserting.

Two flavors.
Insert_1(B, e). For all , let i ∈ [1..k] B[hi(e)] = (B[hi(e)] + 1) % x

Query(B, e). Return min
i

B[hi(e)]

Insert_2(B, e). For all that minimize , let i ∈ [1..k] B[hi(e)] B[hi(e)] = (B[hi(e)] + 1) % x

[exo] Compare these variants

Bloom filter // Hierarchical variant (union)

Outline 52

Idea. Propagate Bloom filters bottom-up to quickly identify documents of interest

Quotient filter // Motivation

Outline 53

Idea. Bloom filters uses multiple hash functions to prevent collisions, but...

Lemma (birthday paradox). The expected number of samples to take from [0..n] before observing a

collision is = .π/2 ⋅ n 𝒪(n)

=> the array is far from being full when this problematic arises

can we exploit empty spaces to prevent collisions?

Quotient filter // Definition

Outline 54

H = 01011101000110001100001110011101
quotient = where to insert in Q remainder = what to insert in Q

Idea. Use neighboring cells instead of a mv hash function

Also support deletions!

Cuckoo filter // Definition

Outline 55

The Cuckoo filter supports probabilistic (only FP can happen) membership queries. It

represents a set of n elements using an array C of size m, each cell made of f bits. It
requires three hash functions: h and mv ranging in [0..m), and fgp ranging in [0..f).

Definition (Cuckoo filter).

Insert(B, e).
1.Try to put fgp(e) within

2. If the cell wasn't empty, put in .

3. If a value y was there, move it to , and so on.

C[h(e)]
fgp(e) C[h(e) ⊕ mv(fgp(e))]

C[h(e) + mv(fgp(e)) + mv(y)]

Query(B, e). Check whether fgp(e) indeed lives within or C[h(e)] C[h(e) ⊕ mv(fgp(e))]

B is almost filled when this procedure fails => space gain

You can delete such an entry!

Going further: https://www.cs.cmu.edu/~binfan/papers/conext14_cuckoofilter.pdf

~quotient ~remainder f ∈ Ω(log n)

https://www.cs.cmu.edu/~binfan/papers/conext14_cuckoofilter.pdf

Homeworks
Bloom filter

[1] Implement a working Bloom filter.

[2] Implement the counting variant(s). Recompute kmer histograms from last sessions

using this new data structure.

