Experimental bioinformatics

The Burrows-Wheeler transform and the FM-index

The aim of this tutorial is to develop a toy implementation of the FM-index;, as a Python class. You are expected to put some efforts
toward the quality of the implementation (public/private methods, docstrings, comments, tests, user interface, etc.).

B The Burrows-Wheeler transform

€ Construction

Initialize the fields self . saand self.bwt of the FMindex class. You will rely on the linear-time constuction of the
suffix array provided in ks . py (Karkkainen-Sanders algorithm) as simple_kark_sort.

€ Naive inversion

Implement a method self.get_string__naive that retrieves the original string by reconstructing the Burrows-
Wheeler matrix.

@ Compression capabilities

Implement compression and decompression functions for run-length and move-to-front encodings. Elaborate on the
compression capabilities of these frameworks (separately and combined) on different types of text (random string,
litterate text, genome).

B The FM-index

€ Construction

Initialize the fields self.fm_count, self.fm_rank, self.fm_ranks and self .next_smallest_letter of
the FMindex class. Add a logging option to the class constructor for reporting the initialization steps.

€ Fast BWT inversion

Implement a public method self.get_string that takes advantage of the LF-mapping property of the Burrows-
Wheeler transform to reconstruct the original string.

€@ Exact pattern matching

Implement three public methods self .membership, self.count and self.locate that allow one to perform
pattern matching queries. Try to factorize implementations as much as possible.

@ Lightweight FM-index

Implement a subsampling of the se1f . ranks arrays. Adapt the previous methods to compute ranks on the fly when
needed. Estimate the space-time tradeoffs depending on the proportion of se1f . ranks arrays that are indeed stored.

€ Approximate pattern matching

Adapt the pattern matching functions so that they tolerate a small amount e of self.ranks errors in the pattern.
Evaluate the resulting complexity.

1/1



	The Burrows-Wheeler transform
	Construction
	Naive inversion
	Compression capabilities

	The FM-index
	Construction
	Fast BWT inversion
	Exact pattern matching
	Lightweight FM-index
	Approximate pattern matching


