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Genome assembly (or on modeling biological problems in CS)

Léo Ackermann

N.B. Credits of figures are missing



Before starting

If you want to contact me. By email (leo.ackermann@inria.fr) or by Discord (tag me)

A few review you may find interesting. (Theoretical questions related to bioinformatics)

- Parameterized Algorithms in Bioinformatics: An Overview. Bulteau & Weller, 2019.

"heoretical analysis of edit distance algorithms. Medvedev, 2023.

- Theoretical analysis of sequencing bioinformatics algorithms and beyond. Medvedev, 2023.

- Modeling Biological Problems in Computer Science: A Case Study in Genome Assembly. Medvedev, 2018.
- Information theory in computational biology: where we stand today. Chanda et al. 2020.

- Sketching and sublinear data structures in genomics. Marcais et al. 2019.

- When less is more: sketching with minimizers in genomics. Ndiaye et al. 2024.

- Advancements in practical k-mer sets: essentials for the curious. Marchet. 2024.

- Indexing highly repetitive string collections, part I: repetitiveness measures. Navarro. 2021.

- Indexing highly repetitive string collections, part Il: compressed indexes. Navarro. 2021.

(- |

*blueprint of this lecture ,
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Today's program

A. Discovering genome assembly
B. Trying to formulate it as a mathematical/CS problem

C. Discovering the two main approaches used in practice to solve this problem
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Modeling the biological question
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The De Novo Sequence Assembly problem

Reconstructing the DNA sequence of an individual
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The De Novo Sequence Assembly problem

[1] Double-strands vs smgle -strand
sconstructing A sequence of an individual
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The De Novo Sequence Assembly problem
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The De Novo Sequence Assembly problem

A computer science perspective (draft).

CTAGGCCCTCAATTTTT ]
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA From
TATCTCGACTCTAGGCC these
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT

GGCGTCTATATCT |
» GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Reconstruct this

T — e
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The De Novo Sequence Assembly problem

A computer science perspective (draft).

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT From
CTCGGCTCTAGCCCCTCATTTT these
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC

GGCGTCTATATCTCG |
> PP P PPPPPPPPPRRRlRRRRPPPRRllPRRRRlRR?

Reconstruct this
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A well-formulated problem




Toward a well-defined problem

—— — e — — - — e —h

Input: A collection of strings & = {sy, **, 5, } generated by a sequencmg experlment on some genome I

l 0utput the genome that generated S

What do you thlnk of |t’?
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Toward a well-defined problem

— — —_— . —— - —— e —— — ——— —— ——————— —h

Input: A collection of strings & = {s;, **-, s, } generated by a sequencmg experlment on some genome I

Output: the genome that generated &

GOOD. The input and output of the problem are precisely defined
PROBLEM. The problem is not self-contained ("sequencing experiment”, "genome")
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Toward a well-defined problem

— _— —_— = S e — ——— —— j

Input: A collection of strings & = {sy, **, 5, } generated by a sequencmg expenment on some genome I

Output: the genome that generated &

GOOD. The input and output of the problem are precisely defined
PROBLEM. The problem is not self-contained ("sequencing experiment”, "genome")

e

Input: a collection of strings & = {sy, **+, S, }, aII of them belng substnng of some unknown stnng G ﬂ

Output the unknown string G

| - S — |

| What do you think of it?
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Toward a well-defined problem

—— e —————————— — — _ o — P— S S *—h

Input: A collection of strings & = {sy, **, 5, } generated by a sequencmg expenment on some genome |
- Output: the genome that generated & |

GOOD. The input and output of the problem are precisely defined
PROBLEM. The problem is not self-contained ("sequencing experiment”, "genome")

Input: a collection of strings & = {sy, **+, S, }, aII of them belng substnng of some unknown stnng G ﬂ

 Output: the unknown string G |

__|

| _ R — _ . , _ -

— — = — - ___— — — — ——— _—  — __ ——— _— — ——— ———— e — _ _— @ — - — —————— — e _ JE— = —— S S— S .

PROBLEM. No way to check whether the output of a program that solves it is correct
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Toward a well-defined problem

Definition (Genome assembly, \!1).

e — ]
Input: a collection of strings & = {sy, **+, 5, } )
- Output: a string G that is a common superstring of & '
N - ]

Outline 9



About simplifications

Simple formulations of problems are likely easier to solve/study. Three approaches:
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[B] Use more complex formulations of problems, and hope that we can still come up with an efficient algorithm

[C] Modularize the problem formulation (eg. Step1: ensure a simplifying assumption, Step2: solve it with the simplifying assumption)
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About simplifications

Simple formulations of problems are likely easier to solve/study. Three approaches:
[A] Use simplified formulations of problems, and hope that it does not affect the accuracy on real data
[B] Use more complex formulations of problems, and hope that we can still come up with an efficient algorithm

[C] Modularize the problem formulation (eg. Step1: ensure a simplifying assumption, Step2: solve it with the simplifying assumption)

— == —— — — = = — .

‘ ]
- Motto. The ultimate test of a (practical) algorithm is how is performs on real data! )

L - I , . - 7 _ , . __|

Outline 10



A useful (?) problem




Optimization criterion

Definition (Genome assembly, ‘f1)'

Input: a collection of strings & = {sy, ***, 5, }
- Output: a string G that is a common superstring of &

| R

- = - —

Example. Consider & = {ACG, CGT'}. What is G?
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Optimization criterion

Definition (Genome assembly, \!1).

Input: a collection of strings & = {sy, ***, 5, }
- Output: a string G that is a common superstring of &

| R

—_— = — - — —

Example. Consider & = {ACG, CGT'}. What is G?

Many possible answers: ACGT, ACGCGT, ACGTTTTTTTTCGT, CGTACACACG, ...

Which one should we pick?

Outline 19



Optimization criterion

Definition (Genome assembly, \!1).

o . P T -]
Input: a collection of strings S ={sy, s} 1
- Output: a string G that is a common superstring of & |
N . . - - - 7 - - S , - _ ]

Example. Consider & = {ACG, CGT'}. What is G?

Outline 19



Optimization criterion

Definition (Genome assembly, \!1).

o . I - ]
Input: a collection of strings &' = {s, -, ,} 1
- Output: a string G that is a common superstring of & |
- _ _ . - - - 7 - — e e ]
Example. Consider & = {ACG, CGT'}. What is G?
"the simplest explanation is likely the correct one”
One possible choice. Take one shortest such string, guided by the parsimony principle |
Definition (Genome assembly, v2).
=y e s - - -]
Input: a collection of strings & = {sy, -+, 5, } 1
- Output: a string G that is a shortest common superstring of & |
L N S - e ——————— |

Outline 19



Optimization criterion

Definition (Genome assembly, \!1).

e . e -]
~Input: a collection of strings S = {8, ", 8, } ’
- Output: a string G that is a common superstring of & i*
L . _ - I . 7 - — e e ]
Example. Consider & = {ACG, CGT'}. What is G?
"the simplest explanation is likely the correct one”
One possible choice. Take one shortest such string, guided by the parsimony principle |
Definition (Genome assembly, v2).
-
Input: a collection of strings S ={s,,s,} 1
- Output: a string G that is a shortest common superstring of & |
L B e - .

Limitation. This doesn't guarantee the unicity of the solution (but maybe not a problem on real data).
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Computational complexity

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)
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Computational complexity

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

Why?
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Computational complexity

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

NP-complete: it is unlikely that there exists an algorithm that solves any instance in polytime
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Computational complexity

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

NP-complete: it is unlikely that there exists an algorithm that solves any instance in polytime

1. It is possible that "real world instances" are not worst-case inputs for the problem (eg. Horn-clauses for SAT)
2. ltis possible that a heuristics algorithm performs well on "real world instances” (eg. SAT-solvers)
3. It is possible that the "real world instances” are small enough to run an exponential time algorithms
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Computational complexity

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

NP-complete: it is unlikely that there exists an algorithm that solves any instance in polytime

1. It is possible that "real world instances" are not worst-case inputs for the problem (eg. Horn-clauses for SAT)
2. ltis possible that a heuristics algorithm performs well on "real world instances” (eg. SAT-solvers)
3. It is possible that the "real world instances” are small enough to run an exponential time algorithms

Still, ideally we would like a tractable formulation of the problem.

Outline 13



Computational complexity (critics)
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Computational complexity (critics)

ldea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass
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Idea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass

Hidden constants

Real-world instances

Space requirements
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Computational complexity (critics)

Idea. worst-case time complexity in the RAM model is not a perfect compass

Hidden constants
Constant-time operations

Real-world instances Cache locality

Space requirements

Outline 14



Black-box thinking

Good reflex. "If | were given a O(1) algorithm to my problem, would this help?"
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Black-box thinking

Good reflex. "If | were given a O(1) algorithm to my problem, would this help?"

Genome G
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Black-box thinking

Good reflex. "If | were given a O(1) algorithm to my problem, would this help?"

Simulates

Genome G - Reads {ry, ***, 1, }

n
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Black-box thinking

Good reflex. "If | were given a O(1) algorithm to my problem, would this help?"

Genome assembly (v2)

Simulates

- Reads {1y, **, T, }

Genome G ,

| *or brute-force on small instance
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Black-box thinking
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Genome assembly (v2)

Simulates

- Reads {1y, **, T, }

Genome G ,
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Black-box thinking

Good reflex. "If | were given a O(1) algorithm to my problem, would this help?"

Genome assembly (v2)

Simulates

- Reads {1y, **, T, }

Genome G ,

How do they compare?
We observe |SCS| < |G|, and
notice repetitions in G that are absent in SCS

| *or brute-force on small instance
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Black-box thinking

Good reflex. "If | were given a O(1) algorithm to my problem, would this help?"

Genome assembly (v2)

Simulates

- Reads {1y, **, T, }

Genome G ,

How do they compare?
We observe |SCS| < |G|, and
notice repetitions in G that are absent in SCS

I — S— = e S ——— e ——— —————— :

- We can even prove that this flaw is related to the SCS formulation of the problem |
' ==> Even if we were able to solve GAv2, we won't solve the original biological question. |

| *or brute-force on small instance
Outline 15



Refinements and reformulations

of the problem




SCS introduces non-existing substrings

G

[rue

= AATTCCAGCTGATTCCAGT

Outline



SCS introduces non-existing substrings

G

[rue

= AATTCCAGCTGATTCCAGT

AN

Reads(G,,,.) = {AAT,ATT, TTC,TCC,CCA, CAG,AGC, GCT, CTG,TGA, GAT}

[rue
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SCS introduces non-existing substrings

G

[rue

= AATTCCAGCTGATTCCAGT SCS = AATTCCAGCTGATAGT

N\ /

Reads(G,,,.) = {AAT,ATT,TTC,TCC, CCA, CAG,AGC, GCT, CTG, TGA, GAT}

rue
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SCS introduces non-existing substrings

| i
é ‘
11 i
o I "

[rue

= AATTCCAGCTGATTCCAGT SCS = AATTCCAGCTG

N\ /

Reads(G,,,.) = {AAT,ATT,TTC,TCC, CCA, CAG,AGC, GCT, CTG, TGA, GAT}

rue
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SCS introduces non-existing substrings

| i
é ‘
i i
i it
Lo S e

[rue

= AATTCCAGCTGATTCCAGT SCS = AATTCCAGCTG

) = {AAT, ATT, TTC,TCC,CCA, CAG,AGC,GCT, CTG,TGA, GAT}
substrings of length 2

Reads(G,

rue

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
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SCS introduces non-existing substrings

i
' ‘
{ i
) i
S =S e

[rue

= AATTCCAGCTGATTCCAGT SCS = AATTCCAGCTG

N\ /

Reads(G,,,.) = {AAT,ATT,TTC,TCC, CCA, CAG,AGC, GCT, CTG, TGA, GAT}

rue

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.

Definition (Genome assembly, v3).

T e ., I ]

Input: a collection of strings & = {sy, **+, 5, }, an integer k
Output: a shortest string G such that
[1] G is a common superstring of & )

21 sp“(G) C spX(S)
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SCS introduces non-existing substrings

i
' ‘
{ i
) i
S =S e

[rue

= AATTCCAGCTGATTCCAGT SCS = AATTCCAGCTG

N\ /

Reads(G,,,.) = {AAT,ATT,TTC,TCC, CCA, CAG,AGC, GCT, CTG, TGA, GAT}

rue

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.

Definition (Genome assembly, v3).

T e ., | - ]
’ Input: a collection of strings & = {sy, **+, 5, }, an integer k
Output: a shortest string G such that
[1] G is a common superstring of-& )

21 sp“(G) C spX(S)

Outline 17



SCS introduces non-existing substrings

G,..=AATTCCAGCTGATTCCAGT = SCS = AATTCCAGCTGATAGT

N\ /

) = {AAT,ATT, TTC,TCC, CCA, CAG,AGC,GCT, CTG,TGA, GAT}

rue

Reads(G,

rue

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.

Definition (Genome assembly, v3).

Input; a collection of strings & = {sy, :*, 5, }, an integer k - T

Output: a shortest string G such that
[1] G is a common superstring of-& )

2] sp(G) C sp(S) | |

Caution. It's possible that a k-mer of the "underlying genome" is not spanned by any read, just because of the fragmentation
=> for well-chosen k (given | genome | and n), this can be made very unlikely

Outline 17



Changing perspective: graphs

Definition (Genome assembly, v3)

‘ Input a collection of strings & = {Sl, , 8.}, an mtegerk - *,,j
' Output: a shortest string G such that
[1] G is a common superstring of & )

2. SPk(G) C SPk(CS) ) *k-mer speotrum '

‘ S S —_— _ _

e —— ————— — —_— — — _ — — S S

Outline 18



Changing perspective: graphs

Definition (Genome assembly, v3).

e e ——— — ,,_u

Input: a collection of strings & = 1815 ***, 8, }, an integer ko
 Output: a shortest string G such that
[1] G is a common superstring of & k

| 2. SPk(G)QSPk(CS) ) *K-mer sperum

p— e — — = —— — ———  —— — — — I — — — ————

Definition (de Bruijn graph, combinatorics). The dBG of order k is the graph whose vertices are the words of
length k (over some alphabet) and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Outline 18



Changing perspective: graphs

Definition (Genome assembly, v3)

e —

‘ Input a collection of strings & = {Sl, , 8.}, an mtegerk
‘ - Output: a shortest string G such that

[1] G is a common superstring of &

| 2. SPk(G) C SPk(CSD ) f *K-mer spectrum

|

|

1
-

S . —_— _ — _ 5 —

Definition (de Bruijn graph, combinatorics). The dBG of order k is the graph whose vertices are the words of
length k (over some alphabet) and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Definition (de Bruijn graph, bioinformatics). The (hode) dBG of order k of a collection of strings is the graph
whose vertices are the k-mers of these strings and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Outline 18



Changing perspective: graphs

Definition (Genome assembly, v3).

e — —=

‘ Input a collection of strings & = {Sl, , 8.}, an mtegerk

' - Output: a shortest string G such that
’ [1] G is a common superstring of &

, 2] sp(G) € spH(S)

S ——— = —_— — = — _ —

Definition (de Bruijn graph, combinatorics). The dBG of order k is the graph whose vertices are the words of
length k (over some alphabet) and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Definition (de Bruijn graph, bioinformatics). The (hode) dBG of order k of a collection of strings is the graph
whose vertices are the k-mers of these strings and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Example. G, , = AATTCCAGCTGATTCCAGT

rue
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Changing perspective: graphs

Definition (Genome assembly, v3)

= e —— e e ,—u

‘ Input a collection of strings & = {Sl, , 8.}, an mtegerk

' - Output: a shortest string G such that
‘ [1] G is a common superstring of &

, 2] sp(G) € spH(S)

S . — _ — _ 5

Definition (de Bruijn graph, combinatorics). The dBG of order k is the graph whose vertices are the words of
length k (over some alphabet) and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Definition (de Bruijn graph, bioinformatics). The (hode) dBG of order k of a collection of strings is the graph
whose vertices are the k-mers of these strings and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Example. G, , = AATTCCAGCTGATTCCAGT

rue

TTC TCC CCA
AAT ATT CAG AGT

GAT TGA CTG GCT AGC

Outline 18



Changing perspective: graphs

Definition (Genome assembly, v3)

A S e — —— S — ,_“

‘ Input a collection of strings & = {Sl, , 8.}, an mtegerk

' - Output: a shortest string G such that
‘ [1] G is a common superstring of &

, 2] sp(G) € spH(S)

S . — _ — _ 5

Definition (de Bruijn graph, combinatorics). The dBG of order k is the graph whose vertices are the words of
length k (over some alphabet) and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Definition (de Bruijn graph, bioinformatics). The (hode) dBG of order k of a collection of strings is the graph
whose vertices are the k-mers of these strings and u->v iff the (kK — 1)-suffix of u is the (k — 1)-prefix of v.

Example. G, , = AATTCCAGCTGATTCCAGT

rue

TTC . TCC—— CCA
AAT . ATT— T~ CAG——AGT

/
N\ GAT—TGA—CTG—GCT—AGC

Outline 18



Changing perspective: graphs

Definition (Genome assembly, v4)

e e ——— — —— =

1 Input a collection of strings & = {Sl, , 8.}, an integer k

 Output: a shortest string G such that

[1] G is a common superstring of & k
| 2] sp(G) C sp(S) *k-mer spectrum |

R —_— = — — - = — e —— = — == =— _— — — _

Definition (Genome assembly, v5)
e — — = - — —

' Input a collection of strings & = {s¢, ***, 5, }, an mtegerk
' Output The strlng spelt by an Hamlltonlan path Ig the de Bruun graph of order k of cS’ '

Outline
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Changing perspective: graphs

1 Input a collection of strings & = {Sl, , 8.}, an integer k

J

Definition (Genome assembly, v4)

Output: a shortest string G such that
[1] G is a common superstring of & k

2. SPk(G) C SPk(CS) ) *k-mer spectrum | ‘

o . _ — — = —_— — = s— _— = = = - . J—

Input a collection of strings & = {s¢, ***, 5, }, an mtegerk

Outline

e ———————————— ——— e ———— e — m—

Output The strlng spelt by an Hamlltonlan path Ig the de Bruun graph of order k of cS’

Looks NP-hard...

19



The line graph of dBG-k is dBG-(k+1)

TTC —— TCC—— CCA
AAT . ATT— S CAG - AGT

AN /

GAT —TGA—CTG—GCT—AGC

dBG-3.

Outline



The line graph of dBG-k is dBG-(k+1)

pATT AT TTC ——= TCC—* CCA~L0AC
dBG-3. AAT—»A'I_I'/ \CAG LUAGT

v&ATT TGAT CTGA GCTG AGCT  ~CAGC
GAT —TGA—CTG—GCT—AGC

Outline .



The line graph of dBG-k is dBG-(k+1)

pATT AT TTC ——= TCC——> CCA~LCCAC
dBG-3. AATATT— TCAG CAGT

GATT  TGAT CTGA GCTG AGCT /CAGC
GAT—TGA—CTG—GCT—AGC

Motivation. If we were Interested in linking 4-mers, then it would be an Eulerian path problem => tractable
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The line graph of dBG-k is dBG-(k+1)

pATT AT TTC ——= TCC—* CCA~L0AC
dBG-3. AAT—»A'I_I'/ \CAG LUAGT

'&ATT TGAT CTGA GCTG AGCT  ~CAGC
GAT —TGA—CTG—GCT—AGC

Motivation. If we were Interested in linking 4-mers, then it would be an Eulerian path problem => tractable

TCC CCA CAG AGT

AAT ATT TIC~
' ' AGC
o~ TGA CTG  _GCT

Outline .



The line graph of dBG-k is dBG-(k+1)

pATT AT TTC ——= TCC——> CCA~LCCAC
dBG-3. AATATT— TCAG CAGT

GATT TGAT CTGA GCTG AGCT  ~CAGC
GAT—TGA—CTG—GCT—AGC

Motivation. If we were Interested in linking 4-mers, then it would be an Eulerian path problem => tractable

TCC .. CCA , CAG , AGT

- AG - GT

TG - 7C

AAT AT TTC—
AGC

AT~ TGA . CTG ., _GCT ...

AA

Outline 20



The line graph of dBG-k is dBG-(k+1)

pATT AT TTC ——= TCC——> CCA~LCCAC
dBG-3. AATATT— TCAG CAGT

GATT TGAT CTGA GCTG AGCT  ~CAGC
GAT—TGA—CTG—GCT—AGC

Motivation. If we were Interested in linking 4-mers, then it would be an Eulerian path problem => tractable

aar T TIG _TCC . CCA , CAG , AGT _

AGC
\GA T1GA - C1G . GCT

'

Definition (Genome assembly v6) -

4 Input a collection of strings § = {51 ,s },an lntegerk S T)

AA

lr Output The string spelt by an Eulerian path in the (edge) de Bruun graph of order (k — 1) of oS’

Outline 20



The impact of branching nodes

Definition (Genome assembly, v6).

Input: a collection of strings & = 1S1s ***» 8, }, an integer k )

_ = e ———— — — P — W — = — |

| o »

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order (k — 1) of &

Outline 51



The impact of branching nodes

Definition (Genome assembly, v6)

—  —— — _ = s _ — S e - i e e —— _7—_;_;‘1

Input a collection of strlngs § = {Sl, , 8.}, an mtger k )

0utput The strlng spelt by an Eulerlan path in the (edge) de Bruun graph of order (k — 1) of cS’

[1] Can create an exponential number of Eulerian paths

Outline 51



The impact of branching nodes

Outline

Definition (Genome assembly, v6)

—— —— — ——— — _ — e _ — S e - i e e —— _7—_;_:‘”

Input a collection of strlngs § = {Sl, , 8.}, an mtger k )
Output The strlng spelt by an Eulerlan path in the (edge) de Bruun graph of order (k — 1) of cS’

[1] Can create an exponential number of Eulerian paths

[2] Can create substrings not presents in reads #, (eg. chimera #)

21



The impact of branching nodes

Definition (Genome assembly, v6)

—  —— — _ = s _ — S e - i e e —— _7—_;_;‘1

Input a collection of strlngs § = {Sl, , 8.}, an mtger k )

0utput The strlng spelt by an EuIerlan path in the (edge) de Bruun graph of order (k — 1) of cS’

[1] Can create an exponential number of Eulerian paths

[2] Can create substrings not presents in reads #, (eg. chimera #)

‘ No matter what we do |f the genome |s repet|t|ve we oannot recover |t

Outline 51



A more reasonable problem

Outline



A more reasonable problem

Definition (Genome assembly, v7)

! Input a collection of strings & = {Sl, , 8.}, an mtegerk

[’ 0utput The collectlon of strlng spelt by non- branchmg paths Ig the (edge) de Bruun graph of order (k — 1) of cS’

Outline 22



A more reasonable problem

Definition (Genome assembly, v7).

Input: a collection‘ of strings & = {sl, e, Sn}, an integerhk |

RN

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order (k — 1) of & |

Definition (unitig). A path in the dBG is a unitig if
1. all its vertices except the first one have one incoming edge
2. all its vertices except the last one have one outcoming edge

Outline 22



A more reasonable problem

Definition (Genome assembly, v7).

Input: a collection‘ of strings & = {sl, e, Sn}, an integerbk |

RN

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order (k — 1) of & |

Definition (unitig). A path in the dBG is a unitig if
1. all its vertices except the first one have one incoming edge
2. all its vertices except the last one have one outcoming edge

Morally, these are strings that appear as substring in any genome reconstruction based on the dBG

Outline 22



A last word on "usefulness"




(Hidden) assumptions we've made

Outline



(Hidden) assumptions we've made

Outline

No errors In the reads

CTAGGCCCTCAATTTTT
GGCGTIATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGAIE TAGG
GGCTCTAGGCCCTCATTTTTT
cTBGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
6GeGTCTATATCTCIR

Reconstruct this

- P P PP P P PP PP P R PP PR PR PR PR PR P P R I

From
these

24



(Hidden) assumptions we've made

No errors In the reads

CTAGGCCCTCAATTTTT
GGCGTIATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGETAGG
GGCTCTAGGCCCTCATTTTTT From
CTEEGCTCTAGCCCCTCATTTT these
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC

ceTcTATATCTC |
P P P e P P P P P P e e P PR R Y,

Reconstruct this

All reads are 5' to 3'

Thymine HoN Adenine
oS «:’"mfg
y "H‘.N
’ 5 hp%
Cytosme
HO Guamne
Flve Prime & Three Prlme

*bidirectional model
Outline 24



(Hidden) assumptions we've made

No errors in the reads All k-mers are present in the reads

CTAGGCCCTCAATTTTT
GGCGTIATATCT
CTCTAGGCCCTCAATTTTT

TCTATATCTCGGETAGG S
GGCTCTAGGCCCTCATTTTTT From

CTEEGCTCTAGCCCCTCATTTT these ——
TATCTCGACTCTAGGCCCTCA —_—
GGCGTCGATATCT
TATCTCGACTCTAGGCC

ceTcTATATCTC |
P P P e P P P P P P e e P PR R Y,

Reconstruct this

*coverage gap ——

All reads are 5' to 3'

Thymme '.,,H Adenine
-
a0
y ’H‘.N
- / 5 \opgo
Cytosme
HOyGuamne
Flve Prime & Three Prlme
T — T —————————————

*bidirectional model
Outline 24



(Hidden) assumptions we've made

No errors in the reads All k-mers are present in the reads

CTAGGCCCTCAATTTTT
GGCGTIATATCT
CTCTAGGCCCTCAATTTTT

TCTATATCTCGGETAGG S
GGCTCTAGGCCCTCATTTTTT From

CTEEGCTCTAGCCCCTCATTTT these ——
TATCTCGACTCTAGGCCCTCA —_—
GGCGTCGATATCT
TATCTCGACTCTAGGCC

cGeGTCTATATCTCH |
e PP PP 2222°22°2°22?22°?°?

Reconstruct this

*coverage gap ——

Allreads are 5'to 3
4 Aderine Single haploids

Thymine

5 H'...
Q0"
NH

Yy SpH
11 A |
- 21 1 )
X & 31 i ]
4 I )
.-"HZN © 51 ] | 71 )
H‘ ’ 61l J 81 ]
» 91 G | )
- ~ pgo ‘Ol iml |

. 111 1B )
HO Gllaﬂlne Cytos‘ne d— S. 12' i[a.! ]
' Five Prime & Three Prime o —— ———————
T — e

*bidirectional model
Outline 24



Origin of flaws

—_— = s P — D _—  ————————

, ]
- Motto. The ultimate test of a (practical) algorithm is how is performs on real data! j

o o .

I —— e e — ——  ———— —— —————— — ——— S e — — — G ———

What if it doesn't work?

Outline



Origin of flaws

e ———————a LS _ = — ——= —— —— —— —f

‘ |
;‘ Motto. The ultimate test of a (practical) algorithm is how is performs on real data! ‘

‘\ _ _ . _ — _ - . . __ ___|

— — R — e S— — e —

What if it doesn't work?

Finding the origin of flaws.

A.Simulate data under algorithm's assumptions
B. Simulate biological data to the best we understand it
C.Use real data

Outline 25



Part Il

Solving GAv7 (DNA consensus regions)



De Bruiljn graphs




The de Bruijn graph

Historical context. Coined in 1946, used in bioinformatics in 1995.

Outline

» k=4

readl :
read2 :
read3 :
read4 :

GCTGCCAC

CTGCCACT

AGCTGCCA

TGCCACTA

*finding unitigs Is
easy (compared to HP)
-> stick to node-centric

28



The de Bruijn graph

Historical context. Coined in 1946, used in bioinformatics in 1995.

» k=4 readl : GCTGCCAC
read2 : CTGCCACT
read3 : AGCTGCCA
read4 : TGCCACTA

*finding unitigs Is
easy (compared to HP)

-> stick to node-centric

Benefits.
 The graph can be computed efficiently (exact and fixed-length overlaps)

* Roughly O(| genome |) nodes, doesn't depend on the read coverage

Is there any drawbacks?

Outline 28



Sequencing errors in the de Bruijn graph

> k=4 readl : GCTGCCGC
read2 : CTGACACT
» k=4 readl : GCTGCCAC read3 : AGCTGCCA
read2 :  CTGCCACT readd :  TGCCACTA
read3 : AGCTGCCA
read4 : TGCCACTA

et} —~{aers

AGCT |—{GCTG || cTGC |+ Tacc|—{Geeal—{ccact—{cact! \
S —

=> Even single nucleotide errors have great impact on the topology
Up to k new vertices, new branching paths

Outline 29



Sequencing errors in the de Bruijn graph

> k=4 readl : GCTGCCGC
» k=4 readl : GCTGCCAC ;:::; AGE_IT-(G;?:E:\CT
read2 :  CTGCCACT readd :  TGCCACTA
read3 : AGCTGCCA
read4 : TGCCACTA

AGCT|—{GcTG | cTGe | Tece |—+{ceeca - ccac -+ cact \

=> Even single nucleotide errors have great impact on the topology
Up to k new vertices, new branching paths

=> Challenging task: clean the graph WITHOUT losing SNPs (biological single nucleotide variants)
Topology (candidate error zones), k-mer abundance (decide if error)

Outline 29



The choice of & in the de Bruijn graph

As k grows.

Outline



The choice of & in the de Bruijn graph

As Kk grows.

- the graph becomes more linear as the k-mer is more likely to appear only once in the genome (except. repetition)
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The choice of & in the de Bruijn graph

As Kk grows.

- the graph becomes more linear as the k-mer is more likely to appear only once in the genome (except. repetition)

- the graph becomes disconnected, as some k-mers are not seen in any reads
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The choice of & in the de Bruijn graph

As Kk grows.

- the graph becomes more linear as the k-mer is more likely to appear only once in the genome (except. repetition)

- the graph becomes disconnected, as some k-mers are not seen in any reads

E. Coli, k=31, main component

Outline 30



The choice of & in the de Bruijn graph

As k grows.

- the graph becomes more linear as the k-mer is more likely to appear only once in the genome (except. repetition)

- the graph becomes disconnected, as some k-mers are not seen in any reads

E. Coli, k=31, main component E. Coli, k=62, main component
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The choice of & in the de Bruijn graph

As k grows.

- the graph becomes more linear as the k-mer is more likely to appear only once in the genome (except. repetition)

- the graph becomes disconnected, as some k-mers are not seen in any reads

{/

>IN A \—";“ =

NS

ﬁ

N

\

t\‘:

s

\

'Y >

4
l
v E. Coli, k=2000, main component
E. Coli, k=31, main component E. Coli, k=62, main component

Outline 30



Storage requirements

Storing vertices. log,(4) = 2 bits per k-mer, hence =~ 2k - | genome| bits in total

Storing edges. at least log,(2k - | genome | ) bits per pointer,
hence ~ log,(2k - |genome|) - 4 - 2k | genome | bits in total

Huge!

s - - |
In practice, edges are not stored but computed on the fly (eg. Bloom filter, see Iater.)

_— — s— e —

Outline 31



Oveﬂap graphS (overlap-layout-consensus)




A (slightly) different approach

Definition. The overlap graph is the graph whose vertices are the reads, and the edges connect any

overlapping vertices

Outline

R
R
R
R-e
A:
B
-
X
Y
Z

GACCTACA
ACCTACAA

CCTACAAG

CTACAAGT

TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC

CAAGTCCG
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A (slightly) different approach

Definition. The overlap graph is the graph whose vertices are the reads, and the edges connect any
overlapping vertices

, ¢ GACCTACA
23 ACCTACAA
: CCTACAAG

3
CTACAAGT

R

R

R

R'o

A: TACAAGTT
B ACAAGTTA
G CAAGTTAG
X

Y

V/

TACAAGTC
ACAAGTCC

CAAGTCCG

Note. Edges that can be deduced from transitivity are often removed X

&—E—0C0—@

T — e e

Vertices (reads) included in others are also removed

ATTCCTCATCT

eg. 2 errors overlap Acli}Lng%ATTCT

Outline 33

Approximate overlap is often used



More on the overlap graph

Prop. Let N be the number of reads. The graph has N vertices and O(N?) edges.

Outline 34



More on the overlap graph

Prop. Let N be the number of reads. The graph has N vertices and O(N?) edges.

The construction of the graph requires to align the reads against each other => N? such alignments
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More on the overlap graph

Prop. Let N be the number of reads. The graph has N vertices and O(N?) edges.

The construction of the graph requires to align the reads against each other => N? such alignments

Correcting reads in the approximate overlap setting.

NG N NN \‘ / Ny ~VZa N/ )
13 il
' /‘
\L\/A A/ \A/A/

-

consensus

Outline 34



Part lll (next time)

Real-world genome assembly

Homework.

A. For each of the {short, long} X {high quality, low quality } types of reads, what
method (dBG/OQ) is better suited? Why?

B. Propose (on paper) a complete assembly pipeline, that includes graph-cleaning
steps. Make design assumptions explicit and expected flaws as clear as possible.
Estimate the space/time complexity of each step.



