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Genome assembly (or on modeling biological problems in CS)
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If you want to contact me. By email (leo.ackermann@inria.fr) or by Discord (tag me)

- Parameterized Algorithms in Bioinformatics: An Overview. Bulteau & Weller, 2019. 
- Theoretical analysis of edit distance algorithms. Medvedev, 2023. 
- Theoretical analysis of sequencing bioinformatics algorithms and beyond. Medvedev, 2023. 
- Modeling Biological Problems in Computer Science: A Case Study in Genome Assembly. Medvedev, 2018. 
- Information theory in computational biology: where we stand today. Chanda et al. 2020. 
- Sketching and sublinear data structures in genomics. Marçais et al. 2019. 
- When less is more: sketching with minimizers in genomics. Ndiaye et al. 2024. 
- Advancements in practical k-mer sets: essentials for the curious. Marchet. 2024. 
- Indexing highly repetitive string collections, part I: repetitiveness measures. Navarro. 2021. 
- Indexing highly repetitive string collections, part II: compressed indexes. Navarro. 2021.

A few review you may find interesting. (Theoretical questions related to bioinformatics)

*blueprint of this lecture
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Today's program

A. Discovering genome assembly


B. Trying to formulate it as a mathematical/CS problem


C. Discovering the two main approaches used in practice to solve this problem

3



Part I
Modeling the biological question



Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual 

5

What biologists have What biologists want

Alignment, detect SVs, ...



Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual 

5

Genome

Unknown DNA "strings"

DNA Sequencing

Reads


DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome)

What biologists have What biologists want

Alignment, detect SVs, ...



Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual 

5

Assembly

Computational representation of genome

Genome

Unknown DNA "strings"

DNA Sequencing

Reads


DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome)

What biologists have What biologists want

Alignment, detect SVs, ...



Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual 

5

Assembly

Computational representation of genome

Genome

Unknown DNA "strings"

DNA Sequencing

Reads


DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome)

What biologists have What biologists want

DNA Amplification
 DNA Fragmentation
 Signal acquisition 

(+ base calling)


A (quick) zoom on DNA Sequencing.

Alignment, detect SVs, ...



Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual 

6
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(1M of ±200nt reads for a 5M-nt genome) Assembly
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DNA Amplification
 DNA Fragmentation
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(+ base calling)


What biologists have What biologists want

A (quick) zoom on DNA Sequencing.

This is already extremely simplified!
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Genome

Unknown DNA "strings"

DNA Sequencing

Reads


DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome) Assembly


Computational representation of genome

DNA Amplification
 DNA Fragmentation
 Signal acquisition 

(+ base calling)


What biologists have What biologists want

A (quick) zoom on DNA Sequencing.

[1] Double-strands vs single-strand

[2] Errors in duplication

- Inaccuracies

[3] Human errors

- Ext. factors

[4] 3D DNA Structure

[5] Quality score

- Simplifications
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A well-formulated problem
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Input:  A collection of strings  generated by a sequencing experiment on some genome

Output: the genome that generated 

𝒮 = {s1, ⋯, sn}
𝒮

What do you think of it?
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Input:  a collection of strings , all of them being substring of some unknown string 

Output: the unknown string 

𝒮 = {s1, ⋯, sn} G
G

Input:  A collection of strings  generated by a sequencing experiment on some genome

Output: the genome that generated 

𝒮 = {s1, ⋯, sn}
𝒮

GOOD. The input and output of the problem are precisely defined

PROBLEM. The problem is not self-contained ("sequencing experiment", "genome")

PROBLEM. No way to check whether the output of a program that solves it is correct

Input:  a collection of strings 

Output: a string  that is a common superstring of  

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v1).
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About simplifications
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Simple formulations of problems are likely easier to solve/study. Three approaches:

[A] Use simplified formulations of problems, and hope that it does not affect the accuracy on real data

[B] Use more complex formulations of problems, and hope that we can still come up with an efficient algorithm 

[C] Modularize the problem formulation (eg. Step1: ensure a simplifying assumption, Step2: solve it with the simplifying assumption) 

Motto. The ultimate test of a (practical) algorithm is how is performs on real data!
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Input:  a collection of strings 

Output: a string  that is a common superstring of  
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G 𝒮

Definition (Genome assembly, v1).

Example. Consider . What is ?𝒮 = {ACG, CGT} G

Many possible answers: ACGT, ACGCGT, ACGTTTTTTTTCGT, CGTACACACG, ...

Limitation. This doesn't guarantee the unicity of the solution (but maybe not a problem on real data).

Input:  a collection of strings 

Output: a string  that is a shortest common superstring of  

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v2).

One possible choice. Take one shortest such string, guided by the parsimony principle
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Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

1. It is possible that "real world instances" are not worst-case inputs for the problem (eg. Horn-clauses for SAT)

2. It is possible that a heuristics algorithm performs well on "real world instances" (eg. SAT-solvers)

3. It is possible that the "real world instances" are small enough to run an exponential time algorithms

NP-complete: it is unlikely that there exists an algorithm that solves any instance in polytime
This is not (necessarily) the end of the world!

Still, ideally we would like a tractable formulation of the problem.
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Computational complexity (critics)
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Idea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass

Hidden constants

Real-world instances

Space requirements

Constant-time operations

Cache locality
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Black-box thinking
Good reflex. "If I were given a  algorithm to my problem, would this help?"𝒪(1)

Genome G

How do they compare?

Reads {r1, ⋯, rn}
Simulates 𝒮 = {r1, ⋯, rn}

Genome assembly (v2)

Very big brain*

SCS

*or brute-force on small instance

We observe |SCS| < | |, and 

notice repetitions in  that are absent in SCS

G
G

We can even prove that this flaw is related to the SCS formulation of the problem

==> Even if we were able to solve GAv2, we won't solve the original biological question.
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Refinements and reformulations 
of the problem



Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT



Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}



Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT



Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT



Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2



Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2

Input:  a collection of strings , an integer 

Output: a shortest string  such that 


[1]  is a common superstring of 

[2] 

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum



Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2

Input:  a collection of strings , an integer 

Output: a shortest string  such that 


[1]  is a common superstring of 

[2] 

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

The genome  is not an input, so...Gtrue



Outline

SCS introduces non-existing substrings

17
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SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2

Input:  a collection of strings , an integer 

Output: a shortest string  such that 


[1]  is a common superstring of 

[2] 

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Caution. It's possible that a -mer of the "underlying genome" is not spanned by any read, just because of the fragmentation

                 => for well-chosen  (given  and ), this can be made very unlikely 

k
k |genome | n

The genome  is not an input, so...Gtrue
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Input:  a collection of strings , an integer 
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Input:  a collection of strings , an integer 
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k 𝒮

Definition (Genome assembly, v5).
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Input:  a collection of strings , an integer 

Output: The string spelt by an Hamiltonian path in the de Bruijn graph of order  of 

𝒮 = {s1, ⋯, sn} k
k 𝒮

Definition (Genome assembly, v5).

Looks NP-hard...
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Input:  a collection of strings , an integer 

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order  of 

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v6). Tractable!
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Input:  a collection of strings , an integer 

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order  of 

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v6).

[1] Can create an exponential number of Eulerian paths 
[2] Can create substrings not presents in reads #,# (eg. chimera #)

No matter what we do, if the genome is repetitive, we cannot recover it!



Outline

A more reasonable problem

22



Outline

A more reasonable problem

22

Input:  a collection of strings , an integer 

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order  of 

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v7).



Outline

A more reasonable problem

22

Input:  a collection of strings , an integer 

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order  of 

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v7).

Definition (unitig). A path in the dBG is a unitig if 

1. all its vertices except the first one have one incoming edge 

2. all its vertices except the last one have one outcoming edge 



Outline

A more reasonable problem

22

Input:  a collection of strings , an integer 

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order  of 

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v7).

Definition (unitig). A path in the dBG is a unitig if 

1. all its vertices except the first one have one incoming edge 

2. all its vertices except the last one have one outcoming edge 

Morally, these are strings that appear as substring in any genome reconstruction based on the dBG



A last word on "usefulness"
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24

No errors in the reads

All reads are 5' to 3'

*bidirectional model

All -mers are present in the readsk

*coverage gap

Single haploids
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Motto. The ultimate test of a (practical) algorithm is how is performs on real data!

Finding the origin of flaws.

A. Simulate data under algorithm's assumptions

B.Simulate biological data to the best we understand it

C.Use real data

What if it doesn't work?



Part II
Solving GAv7 (DNA consensus regions) 



De Bruijn graphs
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The de Bruijn graph

28

Historical context. Coined in 1946, used in bioinformatics in 1995.

*finding unitigs is

easy (compared to HP)

-> stick to node-centric

Benefits.  
• The graph can be computed efficiently (exact and fixed-length overlaps)

• Roughly  nodes, doesn't depend on the read coverage𝒪( |genome | )

Is there any drawbacks?
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Sequencing errors in the de Bruijn graph

29

=> Even single nucleotide errors have great impact on the topology
Up to  new vertices, new branching pathsk

=> Challenging task: clean the graph WITHOUT losing SNPs (biological single nucleotide variants)

Topology (candidate error zones), -mer abundance (decide if error)k
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The choice of  in the de Bruijn graphk

30

As k grows. 
- the graph becomes more linear as the -mer is more likely to appear only once in the genome (except. repetition)k
- the graph becomes disconnected, as some -mers are not seen in any readsk

E. Coli, k=31, main component E. Coli, k=62, main component

E. Coli, k=2000, main component
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Storage requirements

31

Storing vertices.  bits per -mer, hence  bits in totallog2(4) = 2 k ≈ 2k ⋅ |genome |

Storing edges. at least  bits per pointer,

      hence bits in total

log2(2k ⋅ |genome | )
≈ log2(2k ⋅ |genome | ) ⋅ 4 ⋅ 2k |genome | Huge!

In practice, edges are not stored but computed on the fly (eg. Bloom filter, see later.)



Overlap graphs (overlap-layout-consensus)
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A (slightly) different approach

33

Definition. The overlap graph is the graph whose vertices are the reads, and the edges connect any          
overlapping vertices

Note. Edges that can be deduced from transitivity are often removed


Vertices (reads) included in others are also removed


Approximate overlap is often used ATTCCTCATCT 
      || || 
     ACAGCTATTCT

eg. 2 errors overlap
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More on the overlap graph

34

Prop. Let N be the number of reads. The graph has N vertices and  edges.𝒪(N2)

The construction of the graph requires to align the reads against each other =>  such alignmentsN2

Correcting reads in the approximate overlap setting. 

consensus



Part III (next time)
Real-world genome assembly

Homework.

A. For each of the  types of reads, what 
method (dBG/OG) is better suited? Why? 


B. Propose (on paper) a complete assembly pipeline, that includes graph-cleaning 
steps. Make design assumptions explicit and expected flaws as clear as possible. 
Estimate the space/time complexity of each step.

{short, long} × {high quality, low quality}


