
Léo Ackermann

BOX
Genome assembly (or on modeling biological problems in CS)

N.B. Credits of figures are missing

Outline

Before starting

2

If you want to contact me. By email (leo.ackermann@inria.fr) or by Discord (tag me)

- Parameterized Algorithms in Bioinformatics: An Overview. Bulteau & Weller, 2019.
- Theoretical analysis of edit distance algorithms. Medvedev, 2023.
- Theoretical analysis of sequencing bioinformatics algorithms and beyond. Medvedev, 2023.
- Modeling Biological Problems in Computer Science: A Case Study in Genome Assembly. Medvedev, 2018.
- Information theory in computational biology: where we stand today. Chanda et al. 2020.
- Sketching and sublinear data structures in genomics. Marçais et al. 2019.
- When less is more: sketching with minimizers in genomics. Ndiaye et al. 2024.
- Advancements in practical k-mer sets: essentials for the curious. Marchet. 2024.
- Indexing highly repetitive string collections, part I: repetitiveness measures. Navarro. 2021.
- Indexing highly repetitive string collections, part II: compressed indexes. Navarro. 2021.

A few review you may find interesting. (Theoretical questions related to bioinformatics)

*blueprint of this lecture

Outline

Today's program

A. Discovering genome assembly

B. Trying to formulate it as a mathematical/CS problem

C. Discovering the two main approaches used in practice to solve this problem

3

Part I
Modeling the biological question

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

5

What biologists have What biologists want

Alignment, detect SVs, ...

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

5

Genome

Unknown DNA "strings"

DNA Sequencing

Reads

DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome)

What biologists have What biologists want

Alignment, detect SVs, ...

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

5

Assembly

Computational representation of genome

Genome

Unknown DNA "strings"

DNA Sequencing

Reads

DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome)

What biologists have What biologists want

Alignment, detect SVs, ...

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

5

Assembly

Computational representation of genome

Genome

Unknown DNA "strings"

DNA Sequencing

Reads

DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome)

What biologists have What biologists want

DNA Amplification
 DNA Fragmentation
 Signal acquisition

(+ base calling)

A (quick) zoom on DNA Sequencing.

Alignment, detect SVs, ...

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

6

Genome

Unknown DNA "strings"

DNA Sequencing

Reads

DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome) Assembly

Computational representation of genome

DNA Amplification
 DNA Fragmentation
 Signal acquisition

(+ base calling)

What biologists have What biologists want

A (quick) zoom on DNA Sequencing.

This is already extremely simplified!

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

6

Genome

Unknown DNA "strings"

DNA Sequencing

Reads

DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome) Assembly

Computational representation of genome

DNA Amplification
 DNA Fragmentation
 Signal acquisition

(+ base calling)

What biologists have What biologists want

A (quick) zoom on DNA Sequencing.

[1] Double-strands vs single-strand

[2] Errors in duplication

- Inaccuracies

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

6

Genome

Unknown DNA "strings"

DNA Sequencing

Reads

DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome) Assembly

Computational representation of genome

DNA Amplification
 DNA Fragmentation
 Signal acquisition

(+ base calling)

What biologists have What biologists want

A (quick) zoom on DNA Sequencing.

[1] Double-strands vs single-strand

[2] Errors in duplication

- Inaccuracies[4] 3D DNA Structure

[5] Quality score

- Simplifications

Outline

The De Novo Sequence Assembly problem
The biological question. Reconstructing the DNA sequence of an individual

6

Genome

Unknown DNA "strings"

DNA Sequencing

Reads

DNA "substrings" 
(1M of ±200nt reads for a 5M-nt genome) Assembly

Computational representation of genome

DNA Amplification
 DNA Fragmentation
 Signal acquisition

(+ base calling)

What biologists have What biologists want

A (quick) zoom on DNA Sequencing.

[1] Double-strands vs single-strand

[2] Errors in duplication

- Inaccuracies

[3] Human errors

- Ext. factors

[4] 3D DNA Structure

[5] Quality score

- Simplifications

Outline

The De Novo Sequence Assembly problem
A computer science perspective (draft).

Outline

The De Novo Sequence Assembly problem
A computer science perspective (draft).

A well-formulated problem

Outline

Toward a well-defined problem

9

Input: A collection of strings generated by a sequencing experiment on some genome

Output: the genome that generated

𝒮 = {s1, ⋯, sn}
𝒮

What do you think of it?

Outline

Toward a well-defined problem

9

Input: A collection of strings generated by a sequencing experiment on some genome

Output: the genome that generated

𝒮 = {s1, ⋯, sn}
𝒮

GOOD. The input and output of the problem are precisely defined

PROBLEM. The problem is not self-contained ("sequencing experiment", "genome")

Outline

Toward a well-defined problem

9

Input: a collection of strings , all of them being substring of some unknown string

Output: the unknown string

𝒮 = {s1, ⋯, sn} G
G

Input: A collection of strings generated by a sequencing experiment on some genome

Output: the genome that generated

𝒮 = {s1, ⋯, sn}
𝒮

GOOD. The input and output of the problem are precisely defined

PROBLEM. The problem is not self-contained ("sequencing experiment", "genome")

What do you think of it?

Outline

Toward a well-defined problem

9

Input: a collection of strings , all of them being substring of some unknown string

Output: the unknown string

𝒮 = {s1, ⋯, sn} G
G

Input: A collection of strings generated by a sequencing experiment on some genome

Output: the genome that generated

𝒮 = {s1, ⋯, sn}
𝒮

GOOD. The input and output of the problem are precisely defined

PROBLEM. The problem is not self-contained ("sequencing experiment", "genome")

PROBLEM. No way to check whether the output of a program that solves it is correct

Outline

Toward a well-defined problem

9

Input: a collection of strings , all of them being substring of some unknown string

Output: the unknown string

𝒮 = {s1, ⋯, sn} G
G

Input: A collection of strings generated by a sequencing experiment on some genome

Output: the genome that generated

𝒮 = {s1, ⋯, sn}
𝒮

GOOD. The input and output of the problem are precisely defined

PROBLEM. The problem is not self-contained ("sequencing experiment", "genome")

PROBLEM. No way to check whether the output of a program that solves it is correct

Input: a collection of strings

Output: a string that is a common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v1).

Outline

About simplifications

10

Simple formulations of problems are likely easier to solve/study. Three approaches:

Outline

About simplifications

10

Simple formulations of problems are likely easier to solve/study. Three approaches:

[A] Use simplified formulations of problems, and hope that it does not affect the accuracy on real data

Outline

About simplifications

10

Simple formulations of problems are likely easier to solve/study. Three approaches:

[A] Use simplified formulations of problems, and hope that it does not affect the accuracy on real data

[B] Use more complex formulations of problems, and hope that we can still come up with an efficient algorithm

Outline

About simplifications

10

Simple formulations of problems are likely easier to solve/study. Three approaches:

[A] Use simplified formulations of problems, and hope that it does not affect the accuracy on real data

[B] Use more complex formulations of problems, and hope that we can still come up with an efficient algorithm

[C] Modularize the problem formulation (eg. Step1: ensure a simplifying assumption, Step2: solve it with the simplifying assumption)

Outline

About simplifications

10

Simple formulations of problems are likely easier to solve/study. Three approaches:

[A] Use simplified formulations of problems, and hope that it does not affect the accuracy on real data

[B] Use more complex formulations of problems, and hope that we can still come up with an efficient algorithm

[C] Modularize the problem formulation (eg. Step1: ensure a simplifying assumption, Step2: solve it with the simplifying assumption)

Motto. The ultimate test of a (practical) algorithm is how is performs on real data!

A useful (?) problem

Outline

Optimization criterion

12

Input: a collection of strings

Output: a string that is a common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v1).

Example. Consider . What is ?𝒮 = {ACG, CGT} G

Outline

Optimization criterion

12

Input: a collection of strings

Output: a string that is a common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v1).

Example. Consider . What is ?𝒮 = {ACG, CGT} G

Many possible answers: ACGT, ACGCGT, ACGTTTTTTTTCGT, CGTACACACG, ...

Which one should we pick?

Outline

Optimization criterion

12

Input: a collection of strings

Output: a string that is a common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v1).

Example. Consider . What is ?𝒮 = {ACG, CGT} G

Many possible answers: ACGT, ACGCGT, ACGTTTTTTTTCGT, CGTACACACG, ...

One possible choice. Take one shortest such string, guided by the parsimony principle
"the simplest explanation is likely the correct one"

Outline

Optimization criterion

12

Input: a collection of strings

Output: a string that is a common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v1).

Example. Consider . What is ?𝒮 = {ACG, CGT} G

Many possible answers: ACGT, ACGCGT, ACGTTTTTTTTCGT, CGTACACACG, ...

Input: a collection of strings

Output: a string that is a shortest common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v2).

One possible choice. Take one shortest such string, guided by the parsimony principle
"the simplest explanation is likely the correct one"

Outline

Optimization criterion

12

Input: a collection of strings

Output: a string that is a common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v1).

Example. Consider . What is ?𝒮 = {ACG, CGT} G

Many possible answers: ACGT, ACGCGT, ACGTTTTTTTTCGT, CGTACACACG, ...

Limitation. This doesn't guarantee the unicity of the solution (but maybe not a problem on real data).

Input: a collection of strings

Output: a string that is a shortest common superstring of

𝒮 = {s1, ⋯, sn}
G 𝒮

Definition (Genome assembly, v2).

One possible choice. Take one shortest such string, guided by the parsimony principle
"the simplest explanation is likely the correct one"

Outline

Computational complexity

13

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

Outline

Computational complexity

13

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

This is not (necessarily) the end of the world!

Why?

Outline

Computational complexity

13

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

NP-complete: it is unlikely that there exists an algorithm that solves any instance in polytime
This is not (necessarily) the end of the world!

Outline

Computational complexity

13

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

1. It is possible that "real world instances" are not worst-case inputs for the problem (eg. Horn-clauses for SAT)

2. It is possible that a heuristics algorithm performs well on "real world instances" (eg. SAT-solvers)

3. It is possible that the "real world instances" are small enough to run an exponential time algorithms

NP-complete: it is unlikely that there exists an algorithm that solves any instance in polytime
This is not (necessarily) the end of the world!

Outline

Computational complexity

13

Lemma. The "Genome Assembly (v2)" is NP-complete (by reduction to Hamiltonian path)

1. It is possible that "real world instances" are not worst-case inputs for the problem (eg. Horn-clauses for SAT)

2. It is possible that a heuristics algorithm performs well on "real world instances" (eg. SAT-solvers)

3. It is possible that the "real world instances" are small enough to run an exponential time algorithms

NP-complete: it is unlikely that there exists an algorithm that solves any instance in polytime
This is not (necessarily) the end of the world!

Still, ideally we would like a tractable formulation of the problem.

Outline

Computational complexity (critics)

14

Outline

Computational complexity (critics)

14

Idea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass

Outline

Computational complexity (critics)

14

Idea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass

Hidden constants

Outline

Computational complexity (critics)

14

Idea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass

Hidden constants

Real-world instances

Outline

Computational complexity (critics)

14

Idea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass

Hidden constants

Real-world instances

Space requirements

Outline

Computational complexity (critics)

14

Idea. Asymptotical worst-case time complexity in the RAM model is not a perfect compass

Hidden constants

Real-world instances

Space requirements

Constant-time operations

Cache locality

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

15

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

Genome G

15

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

Genome G Reads {r1, ⋯, rn}
Simulates

15

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

Genome G Reads {r1, ⋯, rn}
Simulates 𝒮 = {r1, ⋯, rn}

Genome assembly (v2)

15

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

Genome G Reads {r1, ⋯, rn}
Simulates 𝒮 = {r1, ⋯, rn}

Genome assembly (v2)

Very big brain*

SCS

*or brute-force on small instance 15

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

Genome G

How do they compare?

Reads {r1, ⋯, rn}
Simulates 𝒮 = {r1, ⋯, rn}

Genome assembly (v2)

Very big brain*

SCS

*or brute-force on small instance 15

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

Genome G

How do they compare?

Reads {r1, ⋯, rn}
Simulates 𝒮 = {r1, ⋯, rn}

Genome assembly (v2)

Very big brain*

SCS

*or brute-force on small instance

We observe |SCS| < | |, and

notice repetitions in that are absent in SCS

G
G

15

Outline

Black-box thinking
Good reflex. "If I were given a algorithm to my problem, would this help?"𝒪(1)

Genome G

How do they compare?

Reads {r1, ⋯, rn}
Simulates 𝒮 = {r1, ⋯, rn}

Genome assembly (v2)

Very big brain*

SCS

*or brute-force on small instance

We observe |SCS| < | |, and

notice repetitions in that are absent in SCS

G
G

We can even prove that this flaw is related to the SCS formulation of the problem

==> Even if we were able to solve GAv2, we won't solve the original biological question.

15

Refinements and reformulations
of the problem

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

The genome is not an input, so...Gtrue

Outline

SCS introduces non-existing substrings

17

Gtrue = AATTCCAGCTGATTCCAGT

Reads(Gtrue) = {AAT, ATT, TTC, TCC, CCA, CAG, AGC, GCT, CTG, TGA, GAT}

SCS = AATTCCAGCTGATAGT

Idea. Add constraints on the substrings of the solution: all 2-mers of the solution are required to be 2-mers of the genome.
substrings of length 2

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Caution. It's possible that a -mer of the "underlying genome" is not spanned by any read, just because of the fragmentation

 => for well-chosen (given and), this can be made very unlikely

k
k |genome | n

The genome is not an input, so...Gtrue

Outline

Changing perspective: graphs

18

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Outline

Changing perspective: graphs

18

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Definition (de Bruijn graph, combinatorics). The dBG of order is the graph whose vertices are the words of

length (over some alphabet) and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Outline

Changing perspective: graphs

18

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Definition (de Bruijn graph, combinatorics). The dBG of order is the graph whose vertices are the words of

length (over some alphabet) and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Definition (de Bruijn graph, bioinformatics). The (node) dBG of order of a collection of strings is the graph

whose vertices are the -mers of these strings and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Outline

Changing perspective: graphs

18

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Definition (de Bruijn graph, combinatorics). The dBG of order is the graph whose vertices are the words of

length (over some alphabet) and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Definition (de Bruijn graph, bioinformatics). The (node) dBG of order of a collection of strings is the graph

whose vertices are the -mers of these strings and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Gtrue = AATTCCAGCTGATTCCAGTExample.

Outline

Changing perspective: graphs

18

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Definition (de Bruijn graph, combinatorics). The dBG of order is the graph whose vertices are the words of

length (over some alphabet) and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Definition (de Bruijn graph, bioinformatics). The (node) dBG of order of a collection of strings is the graph

whose vertices are the -mers of these strings and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Gtrue = AATTCCAGCTGATTCCAGTExample.

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

Outline

Changing perspective: graphs

18

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v3).

*k-mer spectrum

Definition (de Bruijn graph, combinatorics). The dBG of order is the graph whose vertices are the words of

length (over some alphabet) and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Definition (de Bruijn graph, bioinformatics). The (node) dBG of order of a collection of strings is the graph

whose vertices are the -mers of these strings and u->v iff the -suffix of u is the -prefix of v.

k
k (k − 1) (k − 1)

Gtrue = AATTCCAGCTGATTCCAGTExample.

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

Outline

Changing perspective: graphs

19

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v4).

*k-mer spectrum

Input: a collection of strings , an integer

Output: The string spelt by an Hamiltonian path in the de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
k 𝒮

Definition (Genome assembly, v5).

Outline

Changing perspective: graphs

19

Input: a collection of strings , an integer

Output: a shortest string such that

[1] is a common superstring of

[2]

𝒮 = {s1, ⋯, sn} k
G

G 𝒮
spk(G) ⊆ spk(𝒮)

Definition (Genome assembly, v4).

*k-mer spectrum

Input: a collection of strings , an integer

Output: The string spelt by an Hamiltonian path in the de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
k 𝒮

Definition (Genome assembly, v5).

Looks NP-hard...

Outline

The line graph of dBG-k is dBG-(k+1)

20

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

dBG-3.

Outline

The line graph of dBG-k is dBG-(k+1)

20

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

dBG-3.
AATT ATTC TTCC

TGATGATT

TCCA CCAG

CTGA GCTG AGCT CAGC

CAGT

Outline

The line graph of dBG-k is dBG-(k+1)

20

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

dBG-3.
AATT ATTC TTCC

TGATGATT

TCCA CCAG

CTGA GCTG AGCT CAGC

CAGT

Motivation. If we were interested in linking 4-mers, then it would be an Eulerian path problem => tractable

Outline

The line graph of dBG-k is dBG-(k+1)

20

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

dBG-3.
AATT ATTC TTCC

TGATGATT

TCCA CCAG

CTGA GCTG AGCT CAGC

CAGT

Motivation. If we were interested in linking 4-mers, then it would be an Eulerian path problem => tractable

AAT ATT

GCT
AGC

TTC AGTTCC CCA CAG

CTGTGAGAT

Outline

The line graph of dBG-k is dBG-(k+1)

20

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

dBG-3.
AATT ATTC TTCC

TGATGATT

TCCA CCAG

CTGA GCTG AGCT CAGC

CAGT

Motivation. If we were interested in linking 4-mers, then it would be an Eulerian path problem => tractable

AAT ATT

GCT
AGC

TTC AGTTCC CCA CAG

CTGTGAGAT
AT TT

TC CC CA AG GT

GCCTTGGA

AA

Outline

The line graph of dBG-k is dBG-(k+1)

20

AAT ATT

GCT AGC

TTC
AGT

TCC CCA
CAG

CTGTGAGAT

dBG-3.
AATT ATTC TTCC

TGATGATT

TCCA CCAG

CTGA GCTG AGCT CAGC

CAGT

Motivation. If we were interested in linking 4-mers, then it would be an Eulerian path problem => tractable

AAT ATT

GCT
AGC

TTC AGTTCC CCA CAG

CTGTGAGAT
AT TT

TC CC CA AG GT

GCCTTGGA

AA

Input: a collection of strings , an integer

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v6). Tractable!

Outline

The impact of branching nodes

21

Input: a collection of strings , an integer

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v6).

Outline

The impact of branching nodes

21

Input: a collection of strings , an integer

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v6).

[1] Can create an exponential number of Eulerian paths

Outline

The impact of branching nodes

21

Input: a collection of strings , an integer

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v6).

[1] Can create an exponential number of Eulerian paths
[2] Can create substrings not presents in reads #,# (eg. chimera #)

Outline

The impact of branching nodes

21

Input: a collection of strings , an integer

Output: The string spelt by an Eulerian path in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v6).

[1] Can create an exponential number of Eulerian paths
[2] Can create substrings not presents in reads #,# (eg. chimera #)

No matter what we do, if the genome is repetitive, we cannot recover it!

Outline

A more reasonable problem

22

Outline

A more reasonable problem

22

Input: a collection of strings , an integer

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v7).

Outline

A more reasonable problem

22

Input: a collection of strings , an integer

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v7).

Definition (unitig). A path in the dBG is a unitig if

1. all its vertices except the first one have one incoming edge

2. all its vertices except the last one have one outcoming edge

Outline

A more reasonable problem

22

Input: a collection of strings , an integer

Output: The collection of string spelt by non-branching paths in the (edge) de Bruijn graph of order of

𝒮 = {s1, ⋯, sn} k
(k − 1) 𝒮

Definition (Genome assembly, v7).

Definition (unitig). A path in the dBG is a unitig if

1. all its vertices except the first one have one incoming edge

2. all its vertices except the last one have one outcoming edge

Morally, these are strings that appear as substring in any genome reconstruction based on the dBG

A last word on "usefulness"

Outline

(Hidden) assumptions we've made

24

Outline

(Hidden) assumptions we've made

24

No errors in the reads

Outline

(Hidden) assumptions we've made

24

No errors in the reads

All reads are 5' to 3'

*bidirectional model

Outline

(Hidden) assumptions we've made

24

No errors in the reads

All reads are 5' to 3'

*bidirectional model

All -mers are present in the readsk

*coverage gap

Outline

(Hidden) assumptions we've made

24

No errors in the reads

All reads are 5' to 3'

*bidirectional model

All -mers are present in the readsk

*coverage gap

Single haploids

Outline

Origin of flaws

25

Motto. The ultimate test of a (practical) algorithm is how is performs on real data!

What if it doesn't work?

Outline

Origin of flaws

25

Motto. The ultimate test of a (practical) algorithm is how is performs on real data!

Finding the origin of flaws.

A. Simulate data under algorithm's assumptions

B.Simulate biological data to the best we understand it

C.Use real data

What if it doesn't work?

Part II
Solving GAv7 (DNA consensus regions)

De Bruijn graphs

Outline

The de Bruijn graph

28

Historical context. Coined in 1946, used in bioinformatics in 1995.

*finding unitigs is

easy (compared to HP)

-> stick to node-centric

Outline

The de Bruijn graph

28

Historical context. Coined in 1946, used in bioinformatics in 1995.

*finding unitigs is

easy (compared to HP)

-> stick to node-centric

Benefits.
• The graph can be computed efficiently (exact and fixed-length overlaps)

• Roughly nodes, doesn't depend on the read coverage𝒪(|genome |)

Is there any drawbacks?

Outline

Sequencing errors in the de Bruijn graph

29

=> Even single nucleotide errors have great impact on the topology
Up to new vertices, new branching pathsk

Outline

Sequencing errors in the de Bruijn graph

29

=> Even single nucleotide errors have great impact on the topology
Up to new vertices, new branching pathsk

=> Challenging task: clean the graph WITHOUT losing SNPs (biological single nucleotide variants)

Topology (candidate error zones), -mer abundance (decide if error)k

Outline

The choice of in the de Bruijn graphk

30

As k grows.

Outline

The choice of in the de Bruijn graphk

30

As k grows.
- the graph becomes more linear as the -mer is more likely to appear only once in the genome (except. repetition)k

Outline

The choice of in the de Bruijn graphk

30

As k grows.
- the graph becomes more linear as the -mer is more likely to appear only once in the genome (except. repetition)k
- the graph becomes disconnected, as some -mers are not seen in any readsk

Outline

The choice of in the de Bruijn graphk

30

As k grows.
- the graph becomes more linear as the -mer is more likely to appear only once in the genome (except. repetition)k
- the graph becomes disconnected, as some -mers are not seen in any readsk

E. Coli, k=31, main component

Outline

The choice of in the de Bruijn graphk

30

As k grows.
- the graph becomes more linear as the -mer is more likely to appear only once in the genome (except. repetition)k
- the graph becomes disconnected, as some -mers are not seen in any readsk

E. Coli, k=31, main component E. Coli, k=62, main component

Outline

The choice of in the de Bruijn graphk

30

As k grows.
- the graph becomes more linear as the -mer is more likely to appear only once in the genome (except. repetition)k
- the graph becomes disconnected, as some -mers are not seen in any readsk

E. Coli, k=31, main component E. Coli, k=62, main component

E. Coli, k=2000, main component

Outline

Storage requirements

31

Storing vertices. bits per -mer, hence bits in totallog2(4) = 2 k ≈ 2k ⋅ |genome |

Storing edges. at least bits per pointer,

 hence bits in total

log2(2k ⋅ |genome |)
≈ log2(2k ⋅ |genome |) ⋅ 4 ⋅ 2k |genome | Huge!

In practice, edges are not stored but computed on the fly (eg. Bloom filter, see later.)

Overlap graphs (overlap-layout-consensus)

Outline

A (slightly) different approach

33

Definition. The overlap graph is the graph whose vertices are the reads, and the edges connect any
overlapping vertices

Outline

A (slightly) different approach

33

Definition. The overlap graph is the graph whose vertices are the reads, and the edges connect any
overlapping vertices

Note. Edges that can be deduced from transitivity are often removed

Vertices (reads) included in others are also removed

Approximate overlap is often used ATTCCTCATCT
 || ||
 ACAGCTATTCT

eg. 2 errors overlap

Outline

More on the overlap graph

34

Prop. Let N be the number of reads. The graph has N vertices and edges.𝒪(N2)

Outline

More on the overlap graph

34

Prop. Let N be the number of reads. The graph has N vertices and edges.𝒪(N2)

The construction of the graph requires to align the reads against each other => such alignmentsN2

Outline

More on the overlap graph

34

Prop. Let N be the number of reads. The graph has N vertices and edges.𝒪(N2)

The construction of the graph requires to align the reads against each other => such alignmentsN2

Correcting reads in the approximate overlap setting.

consensus

Part III (next time)
Real-world genome assembly

Homework.

A. For each of the types of reads, what
method (dBG/OG) is better suited? Why?

B. Propose (on paper) a complete assembly pipeline, that includes graph-cleaning
steps. Make design assumptions explicit and expected flaws as clear as possible.
Estimate the space/time complexity of each step.

{short, long} × {high quality, low quality}

