
Bioinformatics
The suffix trie and the suffix tree

TD/TP

As you progress within the tutorial, you should develop your intuition on the data structure, as well as gaining automy
for good practices in algorithmics (proper definition of problems, running time analysis, high-level description of

algorithms) and implementations (extensive code documentation with docstrings and comments, robust tests).

The aim of this tutorial is to implement Python classes for the tries, suffix tries and suffix trees data structures.

(1) ■ Tries
The trie TS of a string collection S is a tree such that a string S belongs to S if and only if it spells a root-to-marked-
node path within TS . It is also such that the paths that correspond to string S and S′ coincide in the tree while spelling
their longest common prefix.

▶Question 1. ([) Recall the algorithm that constructs the trie of a set of string given as input, together with its space
and time complexities.

▶Question 2. (v) Use it to build the trie of S = {climate, climb, climbing, close, cloth} by hand.

Now, open suffixes_template.py.

▶Question 3. (�) What does the function Trie.__init__ do?

▶Question 4. (�) Fill in the method Trie.insert so that it insert the word word into the trie self.

▶Question 5. (�) Check your implementation by building the trie of S = {climate, climb, climbing, close, cloth}.
You can display the resulting trie by using the pretty_print() method.

(2) ■ Suffix tries
Suffix tries are particular tries suited for pattern matching, because a pattern P is a substring of some string S if it is
the prefix of one of S’s suffixes.

▶Question 6. ([) Recall the definition of the suffix trie, highlighting the purpose of the fresh letter $.

▶Question 7. (v) Build the suffix trie of “MISSISSIPPI”.

▶Question 8. (�) Rename a copy of the Trie class by SuffixTrie, and change the __init__ method so that it
takes a single word as input and build its suffix trie.

(3) ■ Pattern matching from the suffix tries
Pattern matching is the task of finding occurences of a given pattern within a string. Depending on the output, this
define different flavours of pattern matching.

▶Question 9. ([) Recall the definition of the Membership, Count and LocateAll problems, being as formal as
possible.

▶Question 10. (v) What are the solutions to these three problems on the instance (ST (“MISSISSIPPI”), “SI”)?

(3.1) ■ The Membership problem

▶Question 11. (v) Give a family of tries (Ti)i∈N and a family of pairs of patterns of same length ((Pi, P ′
i))i∈N such

that the execution of the Membership algorithm seen in class on the inputs (Ti, Pi) takes Θ(|P |) time, but only Θ(1)
time on the inputs (Ti, P ′

i).

1/2

BIF – pattern matching TD/TP: The suffix trie and the suffix tree

▶Question 12. (�) Implement a method membership within the SuffixTrie class.

(3.2) ■ The Count problem

▶Question 13. (�) Implement a method count_covered_leaves for Node, and use it to implement a method
count for SuffixTrie

▶Question 14. (�) Implement a method preprocess_leaf_covering for SuffixTrie that stores, at the
level of nodes, the number of leaves it covers. You can use the dictionnary Node.misc, and add a value for the key
'nb_covered_leaves'. This method should run in time O(|T |).

▶Question 15. (�) Implement a method count_fast for SuffixTrie, that take advantage of the information
'nb_covered_leaves'.

▶Question 16. (v) Compare the theoretical complexity of the algorithms under count and count_fast.

▶Question 17. (�BONUS) Can you observe this difference in practice? You can use the time module for timing
executions.

(3.3) ■ The LocateAll problem

▶Question 18. (�) Implement a method locate_all for SuffixTrie. This requires to change the __init__
function of TrieNode to link leaves with their corresponding suffix starting position. You are encouraged to modify the
pretty_print function to help debugging.

(4) ■ Suffix trees
The suffix trees can be seen as compaction of the suffix tries, whose storage requirements are only linear in the size of
the considered string. This compaction also fasten depth-first traversal of the tree, greatly enhancing the complexity of
many algorithms compared to their trie version.

▶Question 19. (v) Build the suffix tree of “MISSISSIPPI”.

▶Question 20. (�) Create a new class SuffixTree together with its __init__ function.

Hint. You can structure the __init__ function as follows: (1) create the suffix trie (2) traverse it top-down while
compacting the branches along the way, and keeping track of the trie depth (eg. storing it in the misc dictionnary) (3)
traverse it bottom-up to propagate the knowlegde of some covered starting position into every nodes.

▶Question 21. (�) Implement a membership method for the SuffixTree class.

▶Question 22. (�BONUS) Implement methods count and locate_all for the SuffixTree class.

(5) ■ Challenge: longest common subsequence

One can generalize the suffix tries to collections of sequences as follows: the suffix trie of C = (S1, S2 · · · , Sn) is
defined as the trie of Suffs(S1$1) ∪ Suffs(S2$2) ∪ · · · ∪ Suffs(Sn$n), where {$1, $2, · · · , $n} are distinct symbols
that do not appear in C. The suffix trees can be generalized similarly.

▶Question 23. (ÛBONUS) What is the longest common substring between the genomes of the following widespread
viruses: Hepatitis delta virus and Human immunodeficiency virus-1.

2/2

	Tries
	Suffix tries
	Pattern matching from the suffix tries
	The Membership problem
	The Count problem
	The LocateAll problem

	Suffix trees
	Challenge: longest common subsequence

