
Bioinformatics
The Burrows-Wheeler transform and the FM-index

TD/TP

As you progress within the tutorial, you should develop your intuition on the data structure, as well as gaining automy
for good practices in algorithmics (proper definition of problems, running time analysis, high-level description of

algorithms) and implementations (extensive code documentation with docstrings and comments, robust tests).

The aim of this tutorial is to develop a toy implementation of the FM-index, as a Python class. We start with
compression aspects of the Burrows-Wheeler transform, relying on naive algorithms for computing and inverting the
BWT. Then, we build a reasonably efficient textbook version of the FM-index, and later shrink its space requirements
by subsampling arrays’ components of the index.

(1) ■ Compressing with the Burrows-Wheeler transform

(1.1) ■ A simple compression scheme, ...

▶Question 1. (v) Encode the string “AAAABBBCCDAA” using run-length encoding.

▶Question 2. (v) Retrieve the string that is encoded as X3Y12WZ5X through run-length encoding.

▶Question 3. (�) Implement the algorithms you used as two Python functions: rle and irle.

(1.2) ■ and a reversible transformation...

▶Question 4. (v) Compute the Burrows-Wheeler transform of “ANANAS”, deriving it from the corresponding
Burrows-Wheeler matrix.

▶Question 5. (v) Do you think the practical complexity of the algorithm you used readily derives from its asymptotical
complexity ? Justify.

▶Question 6. (�) Implement the algorithm you used as a Python function: bwt.

▶Question 7. (v) Retrieve the string S whose Burrows-Wheeler transform is “YIVVI$F”, by iteratively reconstructing
the Burrows-Wheeler matrix.

▶Question 8. (�) Implement the algorithm you used as a Python function: ibwt.

(1.3) ■ ...that makes runs out of redundancy

▶Question 9. (Û) Compare the compression capabilities of the BWT-RLE scheme on the files dickens.txt, dudh.txt,
random.txt. In particular, highlight the crucial role of the Burrows-Wheeler transform.

(2) ■ Indexing with the BWT: the FM-index
Now, open fmindex_template.py. We start by building the TextbookFMindex class.

(2.1) ■ Efficient construction of the BWT

▶Question 10. ([) Recall the definition of the suffix array, and the definition of the BWT that relies on the latter.

▶Question 11. (v) Use these definitions to compute the Burrows-Wheeler transform of “ANANAS”.

▶Question 12. (�) Fill in the methods _compute_sa and _compute_bwt accordingly. For the former, use the
function simple_kark_sort from the file ks.py: it returns the suffix array of S when given S$ as input.

1/2

BIF – pattern matching TD/TP: The Burrows-Wheeler transform and the FM-index

(2.2) ■ Efficient inversion of the BWT

▶Question 13. (v) Retrieve the string S whose Burrows-Wheeler transform is “YIVVI$F”, by leveraging the LF-
mapping property.

▶Question 14. (v) What are the Count map and (Rankx)x∈{A,N,S} arrays of the FM-index of “ANANAS”.

▶Question 15. (v) Propose an algorithm that compute the (Rankx)x∈Σ arrays of the FM-index of a string S in time
O(|S| · |Σ|).

▶Question 16. (v) Propose an algorithm that derives the Count map from the (Rankx)x∈Σ arrays of an FM-index
in time O(|Σ|).

▶Question 17. (�) Fill in the methods _compute_ranks and _compute_countmap accordingly.

▶Question 18. (v) Express the LF-mapping as a function of the Count map and the (Rankx)x∈Σ arrays.

▶Question 19. (�) Fill in the method _lf_mapping accordingly.

▶Question 20. (�) Fill in the method get_string, that retrieve the string encode within the BWT in linear time.

(2.3) ■ Efficient answers to pattern matching queries

▶Question 21. (v) Represent graphically the successive F/L-intervals considered while looking for the pattern “NAN”
using the FM-index.

▶Question 22. (�) Fill in the method _get_pattern_interval.

▶Question 23. (�) Fill in the methods membership, count and locate, to answer pattern matching queries.

(2.4) ■ Subsampling arrays: trading time for space
We now shift to the real FMindex class. It inherits from the TextbookFMindex class, but will only keep one out of
σ entries of the suffix array, and one out of ρ entries of the ranks arrays. Naturally, dedicated methods will be needed
to access these subsampled arrays.

▶Question 24. (�) Fill in the method _subsample_ranks. The sparsity of the subsampled arrays should depend
on a new attribute of the FMindex class you will introduce.

▶Question 25. (�) Fill in the method _get_ranks_entry, that should act as TextbookFMindex’s ranks arrays,
recomputing non-stored values on-the-fly.

▶Question 26. (�) Fill in the method _subsample_sa. The sparsity of the subsampled suffix array should depend
on a new attribute of the FMindex class you will introduce.

▶Question 27. (�) Fill in the method _get_sa_entry, that should act as TextbookFMindex’s sa array, recomputing
non-stored values on-the-fly.

▶Question 28. (�) Override all methods inherited from TextbookFMindex that makes call to the ranks and
suffix arrays, so that they work with subsampled arrays.

▶Question 29. (ÛBONUS) Elaborate on the space-time tradeoff offered by the subsampling rates ρ and σ.

2/2

	Compressing with the Burrows-Wheeler transform
	A simple compression scheme, ...
	and a reversible transformation...
	...that makes runs out of redundancy

	Indexing with the BWT: the FM-index
	Efficient construction of the BWT
	Efficient inversion of the BWT
	Efficient answers to pattern matching queries
	Subsampling arrays: trading time for space

