Algorithms in bioinformatics

The suffix trie

As you progress within the tutorial, you should develop your intuition on the data structure, as well as gaining antomy
for good practices in algorithmics (proper definition of problems, running time analysis, high-level description of

algorithms) and implementations (extensive code documentation with docstrings and comments, robust tests).

The aim of this tutorial is to implement a SuffixTrie class, that support basic pattern matching queries for
the Membership, Count and LocateAll problems. We start by implementing a Trie class, and we then modify it
iteratively to support each type of pattern matching request (and even more).

B Tries

The trie T's of a string collection & is a tree such that a string S belongs to & if and only if it spells a root-to-marked-
node path within T’s. Itis also such that the paths that correspond to string S and S’ coincide in the tree while spelling
their longest common prefix.

» Question 1. (#*) Recall the algorithm that constructs the trie of a set of string given as input.
» Question 2. (#°) What are its asymptotical complexity in time and memory? Justify.
» Question 3. (| P4) Use it to build the trie of S = {climate, climb, climbing, close, cloth} by hand.

Now, open suffixes_template.py.

» Question 4. (| 0) What does the function Trie.__init__ do?
» Questions. (0) Fill in the method Trie. insert so that it insert the word word into the trie self.

» Question 6. (|) Check your implementation by building the trie of S = {dimate, climb, climbing, close, cloth}.
You can display the resulting trie by using the pretty_print () method.

B Suffix tries

Sufhix tries are particular tries suited for pattern matching, because a pattern P is a substring of some string .S’ if it is

the prefix of one of S’s suffixes.
» Question 7. (#) Recall the definition of the suffix tre.

» Question 8. (#*) What is the purpose of introducing the fresh letter $ in the definition?

» Question 9. (L) Rename a copy of the Trie dass by Suf fizTrie, and change the __init__ method so that it
takes a single word as input and build its suffix trie.

B Pattern matching from the suffix tries

Pattern matching is the task of finding occurences of a given pattern within a string. Depending on the output, this
define different flavours of pattern matching.

» Question 10. (#°) Recall the definition of the Membership, Count and LocateAll problems, being as formal as
possible.

€ The Membership problem

» Question . (#*) Propose an algorithm that solves the Membership problem in linear time, with respect to the
pattern size.

1/2

ALG — pattern matching TD/TP: The suffix trie

» Question 12. (#*) Givea trie T and two patterns’ (P, P') of same length such that the execution of your algorithm
on the input (T, P) takes ©(| P|) time, but only © (1) time on the input (T, P’).

» Question 13. (82 Implement a corresponding method membership within the Suf fizTrie dass.

€ The Count problem

» Question 14. (0) Implement a method count_covered_leavesfor TrieNodethat uses a depth-first traversal
of the node’s subtree to count the number of leaves it contains.

» Question 1s. () Implement a method count for SuffizTrie.

» Question16. (&) Implement a method preprocess_leaf_covering for SuffizTrie that stores, at the
level of nodes, the number of leaves it covers. You can use the dictionnary TrieNode.misc, and add a value for the
key 'nb_covered_leaves . This method should run in time O(|T|).

» Questionry. (81) I mplement a method count_ fast for SuffixTrie, that take advantage of the information
'nb_covered_leaves'.

» Question 18. (#°) Compare the theoretical complexity of the algorithms under count and count_fast.

» Question 19. (L) Can you observe this difference in practice? For (wall-clock) timing executions, you can use the
time module:

import time

start_time = time.time()

PUT HERE THE EXECUTION TO MEASURE

print (f"--— {time.time() - start_time} seconds ——-")

€@ The LocateAll problem

» Question 20. (| 0)r mplement a method locate_all for SuffixTrie. This requires to change the __init__
function of TrieNode to link leaves with their corresponding suffix starting position. You can modify the pretty_print
function to belp debugging.

B More insights from suffix tries

» Question 21. (#* BONUS) Propose a high-level algorithm to compute the longest common substring of two strings.
What is its complexity?

» Question 22. (. 0 Bonus) What is the longest common substring between Hepatitis delta virus and Human

immunodeﬁciency virus-1 genomes?

“To be rigourous one should give a family of such patterns, for any possible length. We let this consideration aside.

2/2

	Tries
	Suffix tries
	Pattern matching from the suffix tries
	The Membership problem
	The Count problem
	The LocateAll problem

	More insights from suffix tries

