ﬂa,k a/o llo/ cc}'(o/alt.c.
Thase ackes are sEll moby confretion,

Pattern matching

Lecture notes of the ALG course

o 2025

Part 1
Introduction

Pattern matching is the process of finding occurences of a specific pattern into a larger text.
When you hit ctrl-F on a webpage to quickly find a word of interest, pattern matching
algorithms are running under the hood. When you use a web search engine, asking for webpage
that contain most of the keywords you queried, pattern matching algorithms are working for
you. When you try to find similarities between two documents to detect plagiarism, these
algorithms are still there. And their applications do not limit to prose (Z8 1). For example, by
defining a “letter” to be a couple note-duration, then one could search for the pattern,

(CHD)(E(D,1)(A3)(A3)(G,6)

within a labelled database of melodies to identify the music that is currently playing.

In this course, we are interested in pattern matching problems in the context of sequence
bioinformatics. Hence, we will work with the letters A, T, C and G that correspond to the four
DNA nucleotides.

The aim of this unitis to introduce you to stringology, the research domain of text algorithm,
and its concepts, by presenting you a few classical algorithms with a focus on the idea rather
than the actual super-efficient implementation. We will cover ideas and algorithms that allows
for pattern matching over strings of millions of characters. Hopefully, you will enjoy their
beauty as much as we are!

B Fifty shades of pattern matching

Now that we understand informally the problem, let us formalize it. As we saw, the string S
and the pattern P that will be given to our pattern matching algorithms are made of letters,
that may be a little different from what we know. Hence, we need to define the alphabet of
letters, which is simply a set of symbol. For such input, we can define many variants depending

i

ALG — pattern matching [. Introduction

on what is expected as an answer. In any case, the concept of occurence is central. We say that
P occursin S if it is a substring of S, that is if there is some k € [0..|S]) such that

S = 50.1)PS[k+1.15))

in which case k is the (starting) position of an occurence of P in S. When clear, we confound
the occurence and its starting position.

The things we want to learn about the occurences of P in .S define different flavours of
pattern matching. In this course, we will mostly focus on the following problems,

Definition 1 (Pattern matching problems, informal). Given a pattern P and a text S
over an ordered alphabet ¥, with | P| < |S|, we consider the following problems:

* Membership. Return whether P occurs in S, or not
* Count. Return the number of occurence of P in S.

* LocateAll. Return (if any) the positions of the occurences of P in S.

Note that outputs are of very different nature: Membership returns a boolean, Count an
integer, and LocateAll a list of integers. We also hightlight that LocateAll is the hardest, in
the sense of complexity theory, that the others. Indeed, if you find an algorithm for this task,
it immediately gives you an algorithm for the two others with the same complexity .
Similarly, Count is harder that Membership (Z83).

B Naive algorithms for pattern matching

As always in algorithmic, we start by establishing a very simple algorithm that solves the problem.
Indeed, it may be the case that this very first idea is sufficient. Our idea is as follows: we will
scan the text from left to right checking, at each position k, whether the substring of | S| of
length | P| starting at index k is equal to P. The occurence checking verifies the characters
from left to right, reporting a mismatch as soon as two characters mismatch. What we do
when an occurence is found depends on the problem: in Membership, we early return True;
in Count, we increment a counter; in LocateAll, we append the occurence to a list.
Here is the algorithm for LocateAll, the two others being left as exercise [(Z84).

Algorithm 1: Naive algorithm for LocateAll

t occ < []

2 fork € [0..|S| — |P]) do

. if (P, S, k) then
4 | return occ = occ + [k]
5: return occ

6: function (P, S, k):

7: fori € [O‘PD do

8: L if P[z] #* S[k+i] then

9: _ return False
10: return True

Algorithmsallow us to reason on the behavior of a method while being agnostic to programming
languages. The intermediate format between prose and source code allows to hide some implementation

23]

ALG — pattern matching I. Introduction

detail for easing analysis. Nevertheless, to trully and deeply master an algorithm, the best way

is still to program it yourself .

Time complexity Let us analyse Algorithm 1. The function Occurs performs, in the
worst-case, | P| comparisions (l. 7-8). It is called (|S| — | P]) times (. 2-3). After each call,
a constant-time operation is run. Overall, the worst-case complexity is thus

OIS =1PD) - O(|P)) - O1) = OS] - [P])-

We can be slighly more precise. Consider running the algorithm on P = aa---aand S =
aa - - - a, and observe that the running time of this particular instance reaches O(|S] - | P|).
This means that our worst-case complexity bound is tight, and we can write that the time
complexity is O(|.S| - | P|) instead.

We highlight that this is only a worst-case bound: for some instance, the running time can

be considerably faster .

B QOutline

In Part IT, we introduce the classical notations and concepts used through the course. We then
explore various efficient pattern matching algorithm depending on whether the preprocess
applies on the pattern (Part III), or the string (Part IV).

Can you think of other pattern matching application beyond prose? For each of them, write
a pattern one could search for.

Give an algorithm for Membership and Count that use LocateAll as a subroutine call
Give an algorithm for Membership that uses Count as a subroutine call

Write explicitly the naive algorithm for Membership and Count.

Implement those simple algorithms in the language of your choice

Propose an instance of the LocateAll problem that runs in time O(|S]).

ALG — pattern matching [. Introduction

Part I1
Preliminaries

(1) W Maths symbols

A set is an unordered collection of objects, called elements. For a set S, the sentence “x is an
element of S” is expressed notationnaly as x € S.
A proposition is a sentence that is either true or false. For P and @) two propositions

* conjuction. The proposition “P and Q)” is true if and only if both P and () are true.

¢ disjunction. The proposition “P or ()” is true if and only if at least one of P or @) is
true.

* conditional. The proposition “P == @Q)” is true if and only if P is false or both P and
Q are true. It reads “P implies (), which is close to the (perhaps) more intuitive “if P,
then Q. anything can happen.

* biconditional. The proposition “P <= ()" is true if and only if P and @ have the
same truth value. It reads “P if and only if Q.

* universal quantifier. The proposition “Vz € S, P(z)” is true if and only if P(x) is
true for every x thatlives in the set S. It can be read “For all z in S, it holds that P(x)”.

* existential quantifier. The proposition “Jz € S, P(x)” is true if and only if P(x) is
true for at least one of the x that lives in the set S. It can be read “there exist z in S such

that P(z)".

* unique existential quantifier. The proposition “3!z € S, P(x)” is true if and only if
P(x) is true for exactly one of the x that lives in the set S. It can be read “there exist a
unique z in S such that P(z)”.

/e

ALG — pattern matching [l. Preliminaries

Rqg. Don’t mix maths and text: in particular, don’t use 3 as a quickterm for “it exists”.
First-order logic statements, but allow for “and” and “or” as handier than “A” and “V”.

The summation symbol allows for a compact notation for the addition of a sequence of
numbers. It is defined as

¢
Zai:ak+ak+1+“'+a€—l+aé7
i=k

that is the addition of a;’s terms, for 7 varying from k to [. We extend the notation to finite

> f@)

zeSs

sets with

being the sum of f(z)’s over all elements x in the set S.

B Stringology stuff (alphabet, prefix)

An (totally) ordered alphabet is a couple (3, <). The first element is the alphabet ¥, a
nonempty finite set of symbols, called letters. The second element < is an order over Elj
such that for any distinct letters z,y € 3, it either holds z < y ory < z. For two letters
x,y € 3, we write ¢ < y when both z < yand x # y hold.

A string (or word) over a given alphabet is a finite sequence of letters. For a string s, we
denote by s its (7 + 1)-th letter, and by |s] its length, which is number of letter it is made of.
Note that the first letter is the letter indexed by o, while the last letter is the letter indexed by
|s| — 1. The indexes are meant to be read modulo [s| — 1, so we allow ourselves to use 5_1;
to denote the last character of s.

The empty string, with no letter, is written €.

The lexicographic order <, over words of (3, <) is defined by:

L Yw EX* wH#e—=— ¢ <jex W,

2. Yw,w' € 7, (w <jex ') = (w)g) < wfo])(’f (wpg = ’wfo] and wip.) <lex
wl .
1.]

A substring of s is a contiguous subsequence of 5. For n. < m two integers, we write

S[n..m] for the word [, S[;,4.1) = * * S[m]> and we write S,) for the word s, _;,—1]- When n
is omitted we refer to a prefix of s, asin S[_,,] = S[o]S[1] * * * S[m)s and when m is omitted we
refer to a suffix of s, asin s, | = S{S[n41) *** Sp—1]-

B Landau notation

In computer science, the complexity of an algorithm generally refers to the amount of computational
ressources needed by this algorithm to complete its task, notably the time it takes and the space
it requires. This complexity is often expressed as a function of the input size.

We write

f=0(g)

for
Je,z0 € R,V > xo, |f(2)] < c-[g(2)].

"This is a binary relation that is reflexive (Vx € X,z <), antisymmetric (Vz,y € ¥, (z < yandy <
x) = x = y)and transitive (Vz,y,2 € 3, (x [yandy < z = z < 2).

o3

ALG — pattern matching Il. Preliminaries

Note that seeing O(g) as a set and write f € O(g) would be more precise as the equality
can only be read one-way, but this abuse of notation is common.
We now lista few consequences of the definitions, that are useful to analyse the asymptotical

complexity of algorithms.

Proposition 2 (Big-O manipulations). Lez fi = O(g1), g1 = O(h1), f2 = O(g2)
and c € R. The following assertions hold:

. fifa = O(g192)

2. fi+ f2 = O(max{|g1],]g2[})
3. ¢ fi=0(q)

4 fi=0(M)

When both f = O(g) and g = O(f), we write f = O(g). This better characterize the
complexity of an algorithm: while utterly non-precise, saying that a linear algorithm runs in
O(n!) time is true.

Demonstrate these pl’OpOSitiOIlS

For each of the following Python codes, estimate the running time as a function of n given
that op () runs in constant time, and op (k) runs in time proportional to k2. You may want
to have a look to triangle and pyramide numbers.

Program 1
for i in range(n):

op(O

Program 2
for i in range(n):
for j in range(n):

opO

Program 3
for i in range(n):
for j in range(i):

opO

Program 4
for i in range(n):
for j in range(i, n):

opO

Program 5
for i in range(n):
op(i)

ALG — pattern matching [l. Preliminaries

Part 111
Preprocessing strings

(1) W Kmer indexing

This is arguably the most natural method one can think of: an inverted file. Given a text in
natural language, the idea is to build a dictionnary of the words used in the text, together with
their locations within it. Searching for a word then amounts to consult this dictionnary, by
running a binary search. In order to apply this idea in bioinformatics, we need a notion of
word. As there is no such notion in biology, we create it artificially: we will index the k-mer of
the string, that is all its substring of length k.

Definition 3 (k-mer index). Letk € N. 4 k-mer index of a string S is a data structure
that represents ocurrence lists Oyy for each k-mer K present in S,

1 € Og — S[’Lz—l—k) =K.

We define the size of the index to be the number of distinct k-mers it hosts.

01234 scITawan T
ATTCEATTCCGAT ok
ATT eClr t?"\
TeG — GAT: (4,01
- GGA Tec i
?. SN Tee . (2]
.l\ CO‘AT TT'C:E\.G'\

Figure 1: The 3-mer index 7 of the string ATTCGATTCCGAT

9/4

ALG — pattern matching [1l. Preprocessing strings

Indexing k-mers Here is an algorithm for construction the k-mer index. We choose to use
an array of list structure for the index, as it allows to run a binary search for finding keys of
entries, and then easily append an occurence in constant time. The drawback of this design is
that inserting a new key takes O(|I|) time once the location of insertion has been found.

Algorithm 2: Building the k-mer index
Input: Astring S, an integer k
Output: The k-mer index of \S, an array of lists denoted 1

P I=]
2 fori € [0..]S| — k) do

3 kmer < Si; ivr)

4: (Iv jk:me?“) «— (I’ k‘mer)

s Append i to I [jimer]

6: return]

7: function (I, kmer):

8: (4, found) « (I, kmer)

9: if found then > A kmer entry was found
1o: return (I, out)

1 else > No kmer entry was found, j is where kmer should be inserted
12 L I' « Ijg jy + [kmer = []] + 1.

B return (I, 5)

The index requires O(|S| + |I|) space to store all the occurences. The building time is
dominated in each loop by the call of FINDKEYORCREATEIT. The complexity of the later
is O(log |I|) if found is true, because of the binary search, and O(|1|) otherwise because of
the creation of a new index I’ (I. 12). Overall, this gives a O(|S| - |I|) complexity, which is
O(|S|?). In fact, this is even O(|S|?) A L).

Searching patterns Clearly, searching for a pattern of length k is immediately done using
binary search in ©(log |I]). This extends to patterns of length k', k because as I is sorted by its
keys, the occurences of P are the ones of all the k-mers prefixed by P. This gives naive running
time of O(log | 1] - |%|F~* + #oces) for LocateAll. But this can be improved. Indeed, all the
k-mers prefixed by P appear contiguously in I. This allows one to search for the first and the
last such k-mers using binary searchs, and then report all the occurences within the interval.
This idea is formalized in Algorithm 3, that runs in ©(log |I| + #occs).

Algorithm 3: LocateAll using k-mer index
Input: The k-mer index of a string S, a pattern P of length bounded by &
Output: The list of occurences of Pin .S

v L=
2 first < (4, P)
3 last (I, P)

4 fori e [first.last] do
s | L« L+1IJi]
6: return L

e

ALG — pattern matching I1. Preprocessing strings

The limitation of k-mer indexing is that it doesn’t allow for searching patterns of arbitrary

size at reasonable cost (29 2).

Another approach Our definition of the k-mer index imposes that if a k-mer is not present
in S, then it is neither a key in . But one could have reasoned difterently: all possible k-mers
are entries of I, but only some of them carry non-empty lists.

This greatly ease the building algorithm, as there is no need to create new keys in the
index. Moreover, it also fasten both the building and searching algorithms because the binary
search is no longer needed: one could directly derive jimer from kmer in O(k) time [(Z43).
Nevertheless, this comes at some cost. The downside of this approach is its space requirement

of O(IZ]* + |5]) CH).

B Suffix tries, and their compaction

Searching for a pattern within a string appears to be difficult because we don’t know where
to start. This is why the naive algorithms are so inefficient: they test all candidate starting
position. While not practical to search for long patterns, the k-mer index from last section
had an important design choice: it directly reasons on the pattern. Given one pattern, one
locates the relevant rows within the index and report occurences.

Here is a nice observation:

@ Key idea. P isasubstring of S ift P is the prefix of a suffix of S.

Indeed, it rephrases the complex problem of checking substring to the more simpler problem
of checking prefixes . So, the pattern matching problem boils down to finding a nice
data structure that is space efficient and well suited for prefix matching, and build it efficiently
for the set of suffixes of S. This is where tries, and their refinement as compact tries, enter the
realm.

@ Tries

A trie is a labeled tree that represent a set of strings S, made of at most 1 leaves and n marked
nodes such that: (x) the edges are labeled by letters of 3, (2) the outgoing edges of any given
node are labeled by distinct letters, (3) every leaf is marked, (4) a string S belongs to S if and
only if S labels a path that goes from the root to a marked node.

Introduction being done, let be a bit more formal. Constructing a trie of a list of strings is
done by successively inserting each string within the trie. For adding a new string, one follows
the existing trie as long as possible: either we end up at an existing node and we mark it, or we
get stuck at some node and we branch to add the remaining part of the string, marking the
new added leaf. This gives the following algorithm, that runs in time (> g5 |5]) ,
and produces a tree made of O ()" gc 5 |S]) nodes .

*®

/i

ALG — pattern matching [1l. Preprocessing strings

Figure 2: On the left, the trie of S = {kind, king, kingdom, knife, knight}. On the right,
e} te) tomd | el
the compacted tree of S.

Algorithm 4: Construction of the trie of &
v T+

2 forS € Sdo

3 tletter < 0, node < root(T")

4 fori € [0..|S]) do

5 if child(node, S};) doesn’t exists then

6: t (node, Sp;))

7 node < child(node, Sj;))

8 (node)

9

. return T

Compacted trie The compacted trie, also known a Patricia trie, greatly reduce the number
of node needed to store equivalent information. Starting from a trie 7, the compacted trie
T is obtained by merging edges of non-branching non-marked nodes, resulting a tree whose
edges are labeled by words instead of letters. This decreases the upperbound on the number of
nodes down to 2|S| — 1. This is because there are | S| marked nodesin 7 (one per string), and
that non-marked nodes are now all branching by construction, so there are at most | S| — 1 of
them. As the merging phase can be performed alongs a depth-first search, the construction of
a compacted trie requires O (> g5 |S|) time.

€ Suffix trie

Leveraging the initial discussion of the section, one would probably define the suffix trie of a
string to be the trie of its suffixes. The downside of this immediate approaches is that not all
suffixes are created equal: some are leaves, while others are internal nodes.

The small twist is to append a character § ¢ ¥ to the string S and to focus on Suffs(S$).
Indeed, as no suffix of S$ are prefix of another suffix of S [(ZH 8), this ensures that all suffixes

appears in the trie as leaves. We thus define

-]

o/

ALG — pattern matching I1. Preprocessing strings

Definition 4 (Suffix trie). The suffix trie of a string S over an alphabet ¥, denoted STg
is the trie of Suffs(S$), where $ & X is a fresh symbol called the termination symbol. It
verifies the property

s € Sufts(S$) <= s spells a root-to-leaf path in STg.

Additionally, its leaves are decorated with the starting position of their corresponding
suffix in S.

that can be computed in time O (3 ;cgusis(s3) [S]) = O(]S|?), based on predeeding section.
There are as many letters to store as nodes, and each branching node has almost || branches.
Overall, the suffix trie of S requires O(|S|? + |S|? + |S||Z]) = O(]S|?) space. This is
prohibitive in practice, even for moderate size genomes (eg. bacteria) (Z89) .

Here is the suffix trie of “banana”. A good exercise([Z8 10) would be to build the suffix trie

of “abracadrabra” on your own.

Figure 3: The suffix trie of BANANA, in its compacted form

@ Suffix tree

To limit the space requierement, we naturally introduce suffix trees as follows.

Definition s (Suffix tree). The suffix tree of a string S over an alphabet ¥, denoted STg
is the compact trie of Suffs(S$), where $ & X is a fresh symbol called the termination
symbol. All its internal nodes are branching (38 11), and it verifies the property

s € Suffs(S%) <= s spells a root-to-leaf path in STg.

Additionally, its leaves are decorated with the starting position of their corresponding
suffix in S.

that can be computed in O(3- csufis(ss) 15]) = O(|S|?), based on predeeding section.

Space requirements We already mentioned that ST is made of ©(|S|) nodes, each of
them having up to |X| children. So storing the topology of ST g requieres ©(|S| - |X|) space.

However, we didn’t discuss yet the cost of storing edge labels. Currently, as each root-to-
leaf path spells a suffix of S$, this costs amounts to the prohibitive O(|S|?). In order to lower
it, one could remark that the label of an edge (u, v) in STg is

e((u77})) = (S[i..))[depth(u)..depth(v))7

1328

ALG — pattern matching [1l. Preprocessing strings

where 7 is the starting occurence of any (eg. the left-most) root-to-leaf path going through v,
and thus through the edge (u, v). That is, if for any node we were able to recover (x) such
a1, (2) the depth of the node, we could forget the label and recompute it on-the-fly. Nicely,
the trie computation and its compression can be adapted to compute those integers and store
them at the level of nodes without increasing the asymptotical complexity . This
drastically reduces the space requierements of edge labels down to O(|.S |)Epverall, the suffix
tree necessitates O(|S| - |X| + |S|) = O(|S] - |3]) space to be stored.
Here is the suffix tree of “banana”, a good exercise is to build the one of “abracadabra”

on your own.

index o
crians € Lo.i'mwj'[aq,ﬁ

Figure 4: The space efficient representation of the suffix tree of ANANAS

€ Linear time construction of the suffix tree

This section is rather advanced, and under construction.

[Léo: TODO later, McCreight’s construction]

€ Querying the suffix trie
e Pattern matching

For S astring whose suffix treeis ST g, and P a pattern, let consider again our favorite problems
Membership, Count and LocateAll.

Membership Asmotivated earlier, testing whether P belongs to S amounts to testing whether
P is the prefix of a suffix of S. For simplicity, first imagine we are give the trie of the suffixes
of S§, that we call suffix trie. Given a pattern, navigate the tree by following the letters of the
patterns: if you succeed, then P is a prefix of a suffix of S and thus belongs to S} if you get
stuck, P is not a substring of S. We formalize this in the following algorithms, that clearly
runs in O (| P|) time.

"The rigorous reader probably noted that this comes at the cost of longer access time to labels. In reality this is
not a problem for our pattern matching applications, because we will recover the label as we progress in the pattern
to search, one letter at a time; and that accessing a specific letter of a label is still constant time.

W

ALG — pattern matching I1. Preprocessing strings

Algorithm 5: Membership on suffix trie
Input: The suffix trie ST g of S, a pattern P
Output: Whether P is a substring of \S, or not

. node < root(STyg)

: fori € [0..|P|) do

if child(node, P;)) doesn’t exists then
| return False

5 node < child(node, Py)

return True

A w R

o

Count Counting the number of occurence of a pattern starts in a very similar way: letter
by letter, we explore the trie by following the pattern to search. Naturally, if we get stuck
this means that there are no occurences of P in S; but what if we succeed? In this case, our
pattern is a prefix of all of the leaves covered by the node with ended at. But the laters exactly
correspond to suffixes of S: so each of the covered leaves correspond to a starting position of

Pin S. The algorithm follows.

Algorithm 6: Count on suffix trie

Input: The suffix trie ST g of S, a pattern P
Output: The number of occurences of P in S

. node < root(STys)
: fori € [0..|P|) do

)

3 if child(node, P;)) doesn’t exists then
4 _ return False

5: node < child(node, Py))

6: return (node)

The function CouUNTCOVEREDLEAVES is implemented using a depth-first search
and as such take O(|STg|) = O(|S|?) time to run, dominating the overall running time. By
slightly adapting the construction of the suffix trie, one can get this overall complexity back to

6(|P|) time G 15).

Locate Locating all occurences can be done with by replacing CoUNTCOVEREDLEAVES
by RETRIEVECOVEREDLEAVES whose implementation are closely related: the only change is
the information collected during the depth-first search. Unfortunately, no preprocessing can
fasten the retrieval of covered leaves without degrading the space complexity: the algorithm
for LocateAll hence runs in time O(|S|?). However, if one is only interested into locating

one and any of the occurences of P in S, then O(|P|) running time is reachable .

e Other applications
While primarily designed to answer exact matching queries, it turns out that suffix tries are

much more versatile. Here, we skim a few examples.

Longest repeating factor A repeating factor (RF) is a substring /2 that appears more than
oncein S. Reasoning on the suffix trie of S, we immediately see that the node that correspond
to any repeating factor R must cover at least two leaves, that link to its multiple occurences.

15/238]

ALG — pattern matching [1l. Preprocessing strings

Now, observe that a longest RF necessarily correspond to a branching node: if it wasn’t the
case, taking one more step in the tree would give alonger RF, contradicting its length-maximality.
Finally, the length of the factor being given by the depth of its corresponding node in the
trie, we found our approach to solve the problem: longest repeating factors correspond to
the deepest branching nodes in ST g. It only remains to perform a depth-first search in time

O(|S]) to find them.

Shortest substring occuring only once Conversely, the shortest substring that occurs
only once in S correspond in ST 5 to the highest node that covers a unique leaf. Similarly,
a breath-first search find them in time O(]S|), while being practically faster in practice than
depth-first search because of early returns.

Longest common prefix The longest common prefix of two suffixes S};) and S;) of S
is S|;..¢;, where £ is the largest integer such that: Vk < £, S[; 1 3] = S[j4x). Within the tree,
the longest common prefix of two suffixes corresponds to the shared part of their respective
root-to-leaf paths, that is the root-to-node path ending at the lowest common ancestors of the
corresponding leaves. While being outside the scope of this course, it is possible to preprocess a
tree so that lowest common ancestor queries can be answered in constant time, with impacting
(asymprtotically) the space required to store the tree. It follows that one can found the longest
common prefix of any two suffixes of S in constant time.

€ Querying the suffix tree

While its compact representation makes it less intuitive to manipulate, the suffix tree behaves
very similarly to its trie equivalent: the algorithms on tries directly translate to their realm.

Besides saving space, it also improve their complexity. Recall the algorithm for LocateAll:
it starts by recognizing the pattern, and then perform a DES to recover the covered leaves. Here
is the twist: as the suffix tree is only made of O(|S|) nodes (while they are O(|.S|?) of them in
the suffix trie), its DFS runs in time linear in |.S| (instead of quadratic in the context of tries).

We now detail the algorithm for Membership on suffix trees, and let as an exercise (28 17
the translation of algorithms from subsections [Léo: X and Y] to the suffix tree realm.

As said, the general behavior of the algorithm is the same. The only difference is that we
need to recover the “labels of the edges” on the fly, as none is stored in the tree explicitly. To this
end, we observed that the label of an edge is contained in any suffix whose root-to-leaf path go
through this edge, or equivalently through the downmost node of this edge. Specifically, the
label of (u7 U) is S[SOMECOVEREDLEAF(U)..) [depth(u)..depth(v))-

Let 7 be such that P corresponded to a non-branching node in the suffix trie. It now
correspond to the some point (strictly) within an edge (parent(u), u) in the suffix tree. Asa
consequence, the next character to compare Pj; 4 1] with is also contained within the (parent (u), u)
segment: one hence test whether P 1) equals SjgomeCoveredLeaf(u)..)[i] Of not. Now, if 4 is
such that P is branching, checking whether Pj; ;1) is first done as in the trie setting, and then
the edge (parent(u), u) we’re in is updated.

This gives rise to the next algorithm, that also run in O(|P|) time.

16

ALG — pattern matching I1. Preprocessing strings

Algorithm 7: Membership on suffix tree
Input: The suffix tree STg of S, a pattern P
Output: Whether P is a substring of \S, or not

t u < root(STy)
fori € [0..|P]) do

[

3: > If we are at a branching node, branch as dictated by the prefix (if possible) <
4 > Otherwise, check the characters that are on the branch N
5: if i > depth(node) then

6: if child(u, Py;)) doesn’t exists then

7: _ return False

8: u < child(u, P;)

o: else
1o: if S[someCoveredLeaf(u)—i—i] 7é P[z] then

w | | return False

2: return True

-

@ Generalizing suffix trees to sets of strings

So far, a suffix tree were attached to a specific string S. It can be extended naturally to set of
string.

Definition 6 (Generalized suffix tree). The generalized suffix tree of a set of strings
S = {S1,--,8n} over an alphaber 5, denoted STs is the compact trie of
Uo<k<|s| Suffs(SkSk), whereall $y, are distinct terminasion symbols that doesn’t belong
to Y. It verifies the property

Vk, s € Suffs(Si8i) <= s spells a root-to-leaf path ended by 3y, in STs.

Additionally, its leaves are decorated with the starting position of their corresponding
suffixin S.

Its construction can be done in time O(3 g5 |5])

&\Nmki)
Anmm

Figure s: The generalized suffix tree of {BANANA, ANANAS}

17

ALG — pattern matching [1l. Preprocessing strings

€ Discussion

One limitation of the suffix tree is their dependence, in size, to the alphabet size. Indeed, when
analysing the algorithm, we (implicitly) assumed that checking the existence of a child for some
letter was a constant time operation: this suggests that all node stores a |X| long array, where
each cell possibly contain a child. While this seems reasonable at the top levels of the tree, this
may cause some loss in space at the lower levels, as the degree of node will likely decrease. A
tradeoff between space and time can be found by changing those arrays to # childs(node), at
the cost of having a log |# childs(nodes)| cost for advancing through the node.

Another limitation is to be found in the linear time construction. Indeed, in practice the
tree won’t fit in the cache: the real cost of following suffix-links is way higher than other O(1)
operations.

Also, while taking space O(|X| - |S]) itis clear that it demands way more space that storing
S, because of the number of time we add linear space informations (depth, someCoveredleaf,
starting index in leafs, ...).

B Suffix array

In this section, ¥ is ordered and $ ¢ %, the termination symbol, is considered smaller than all
letters. We indroduce a new data structure of interest, whose capabalities are comparable to
the suffix tree while requiring much less space in practice.

Definition 7 (Suffix array). The suffix array of a string S, denoted SAs, it the array of
the s starting positions of the lexicographically sorted suffixes of S$, that is

Vi € [0..|S$| — 1), (59)[safi]..) Srex (S8)[sa[i+1)..)-

$ ()
A Mas . ©
= (-
5: E’“@W — Amuas (y —"9‘:'["5‘3"'0""”

RANANAYS (o)
nad)
@)

Figure 6: The suffix array of BANANA

Assuming that log |\S|, the number of bit needed to store the starting index ¢ € [0..]S]) of
a suffix, is smaller than a word size, the suffix array can be store using |\S| computer words,
without any dependence of the size of the alphabet.

While there exists direct construction of the suffix array that are space optimal, in the sense
that the space needed by the algorithm is the space of the suffix array plus some constant extra
space, we focus here on a simpler construction that hightlight the connection between suffix
trees and suffix arrays.

18

ALG — pattern matching I1. Preprocessing strings

Algorithm 8: Construction of the suffix array
Input: The suffix tree STg of S
Output: The suffix array SAg of S.

. node < root(STg)

2: SAg + (‘S’—Fl),’t(—o

3 whilei < |S| + 1do

4 node < (node) > This step never fails
5: if node is a leaf then

6: t SL+ SL+| (node)]

The running time of this algorithm crucially depends on the complexity of NEXTSTEPDEFS,
which is itself linked to the implementation choices of the suffix tree for storing children. On
the one hand, if children of u are stored within sorted array of length # Children(u), then
this step is always constant time. On the other hand, if children of w are stored within array
of length | X|, this step take O(|3|) in the worst case. But with a preprocess of the tree in time
O(|S|-|X]), one can transform such an instance into one of the first kind. The overall running

time thus ranges from O(|S|) to O(|S| - |K|), depending on the design choices.

@ Searching the array

The most important characteristic of the suffix-array, that we will leverage for search, is a
consequence of the suffixes being sorted.

@ Key idea. If P occursin S, then its occurences are contiguous in SAg.

Let demonstrate how to use this idea for solving our Membership, Count and Locate
problems. As before, the steps consisting in “locating the patterns” will be the same for all
three, but the post-processing of this information will slightly differ. Informally, we will track
the range [i1p..9pottom] Of the suffix array where the pattern has a chance to happen. As the
suffix array is sorted, we will iteratively tighten this range using dichotomic searches.

10/28

ALG — pattern matching [1l. Preprocessing strings

Algorithm 9: Pattern matching with the suffix array

Input: The suffix array SAg of a string S, a pattern P
v first < (P,SAg,First)
2. return True iff none first # L > Membership
3 last < (P,SAg,Last)
4 returnlast — first + 1 if the makes sense, 0 otherwise > Count
s: return SA(fipss. asy if the makes sense, 0 otherwise > Locate
6: function (P, SAg, mode)
7¢ (iminu imaa:) < (07 |S| - 1)
8 while ¢y50, # tmae do
9 imid < | Gimin + tmaz) /2] > Ifmode = First
10: imid < | (bmin + tmaz) /2] > Ifmode = Last
I if S[SAs[imid}n) < Pthen
12: ‘ Imin < tmid + 1
13: else if S[SAS[imid]u) > P then
14: ‘ tmaz < Tmid — 1
1s: else if S[SAS[imid]") = Pthen
16: Imaz < tmid > Ifmode = First
17: | Tmin < tmid >Ifmode = Last
18: if S[S/-\s[imm}-.) = Pthen
19: ‘ return i,,;,
20: else
a L L return L

This algorithm clearly runs in time ©(|P|log | S| for Membership and Count, as each

comparision in the dichotomic search take O(| P|) in the worst case. This time turns to © (| P| log |.S|+

#occs for Locate. Note however that this bound is quite pessimistic: morally, if only a very
few long prefixes of P appears in T’, then the expected time for a comparison is no longer | P|
but rather constant! Hence, for example if P is a random string that occurs exactly once in T,

one can show [Z8 20) that the expected running time is O(| P| 4 log |T']).

e Speeding up comparisions

Longest common prefixes Hereisasmall change in the algorithm that, while letting untouched

the asymptotical complexity, drastically improves its performances in practice. The idea is to
that, observe that if the longest common prefix of SAg[iymin]| and SAg [imaz] — confoﬁ.nding
index with the suffix they correspond to, for readibility — is lcp, then lcp is both a prefix of
P and of SAg[imq): the first |lcp| comparision while always succeed and can hence safely

get rid of unneccesary character comparision while comparing P to some Sjsag[i, ..,]..)- For

skipped. Moreover, as

1ep(SAsimin, SAs[imas]) = min {lcp(SAS i, SR i) } ,

lcp(SAS [imid]a SAS[Zmaz])

one can justadapt the comparision step so that s also returns the length l¢p of the two compared
elements as follows.

20/

ALG — pattern matching I1. Preprocessing strings

Algorithm 10: Comparing strings with [cp length

Input: Two strings S and S’, a lower bound £ on the length of lcp(S, S”)
Output: An order of S and S, together with | lep (S, S”)|

1+ ¥0+1
2: while i < min{|S|, |S’|} do

3 if S[l] =+ S[Iﬂ then

4 return (">";i — 1) or ("<",i — 1)

s 14— 1+1

6: return (">",i — 1), ("<",i —1),0r ("=",1 — 1) > Comparing |S| and | S’

Asymptotically faster comparisions Despite its practical capabilities, the former speed-
up doesn’timprove the asymptotical complexity. This is because lep(SAg[min], SAg[maz])
can be way smaller [(Z8 21) than:

max{lcp(SAg[min|, SAg[mid)), lcp(SAg[mid], SAg[maz])}.

As a consequence, characters of P can be compared many times. There exists a more involved
comparision algorithm (that won’t be described here) that ensures that, each iteration, there
is at most one compared character that was compared before. This ensures that at most O(n)
character comparisions are performed during the binary search. The resulting time complexity
is O(|P| + log|T|) in the worst case.

e Enhancing the suffix array

In this simplest version, the suffix array may look deceptive because it doesn’t support the
wide variety of queries handled by the suffix tree. This is not a surprise, as the suffix array only
contains the leaf order of the suffix tree: a lot of information is lost on the way. Fortunately, it
can be augmented with a few extra array to make it as powerful as the suffix trees.

LCParray Inorder tocapture partof the topology of the tree, and motivated by the centrality
of lowest common ancestors in the suffix tree applications, one can desire to store the longest
common prefixes.

Definition 8 (LCP array). The longest common prefix (LCP) array stores the lengths of
the longest common prefixes between all pairs of consecutive suffixes. Namely,

LCPs[i] = |1ep(Sisag(i..)s Sisasfit+1].)l-

It can be constructed naively in time O(|S|?) or derived from the suffix tree in time O(|S|)

. There is also a direct linear time construction, known as Kasai’s algorithm, we won’t

develop here. It enables the search of longest repeated substring, shortest unique substring
and longest common substrings.

A compact representation of the suffix tree By adding two more arrays, one can make a
data structure fully equivalent to the suffix tree, in the sense that any problem solvable in the
suffix tree is also on this new datastructure with the same time complexity. Intuitively, these
extra arrays end to capture the topology of the suffix tree.

/e

ALG — pattern matching [1l. Preprocessing strings

More precisely, a node 7 in the suffix tree is associated to the interval of occurences of the
word spelt by the root-to-n path, and he remaining arrays encode the child and sufhix links
using this association.

B Searching over compressed space
This section is hidden until next lecture.

In order to further reduce the space requirement of our scheme, one could try work on
a space-efficient representation of .S, rather than S itself. This may sound abstract, so let
consider a motivational example. Let S to be the string made of a million of ’A’. The previous
sections tell us that one can builda O(| S|) suffix array/ tree to answer pattern matching question
efficiently. But here is a much more compact algorithm that answer those question directly:

Algorithm 11: Pattern matching on homopolymers
Input: A string S made of a single (repeated) letter, a pattern P

u letter < Sy
2: if P is only made of letter then

3: return True > for Membership
4 return |S| — |P| +1 > for Count
5 return [0..|S] — |P| + 1) > for LocateAll

Of course, this is very specific to this kind of string. But the characteristic that a string can take
less characters to be described than to be written extensively is common to many others, and
relates to the domain of text compression.

€ Compressing repetitive strings

The intuitive definition we gave of compressibility can be formalized with respect to the notion
of Kolmogorov complexity.

Definition 9 (Kolmogorov complexity). The Kolmaogorov complexity of a string S, denoted
IC(S), is the size of smallest program that produces S.

While this value cannot be computed, it helps us drive design of efficient compression
scheme for the repetitive strings we observe in practice in biology. It allows for example to set
aside compression scheme based on character entropy, that encode the most seen letter using
less bits in order to reduce the overall cost. Indeed, for a string S, we expect

bits(entrComp(S™)) &~ n - # bits(entrComp(S5)),

while

K(S™) < K(S)+ O(logn),

as one can build a program that, looping, prints 7 times in a row the string S to producen S™.

Different family of compression methods that leverage the repetitions within string have
arised: lempel-ziv methods, bidirectional macro schemes, grammar compressors, etc. In this
course we focus on the Burrows-Wheeler transform, a (reversible) permutation of the string
that greatly enhance its compression, together with an index built on top of it, the FM-index,
to answer pattern matching queries.

228

ALG — pattern matching I1. Preprocessing strings

€ The Burrow-Wheeler transform

Let start with the transform, defined as follows.

Definition 10 (Burrows-Wheeler transform). The Burrow-Wheeler transform of a
string S, denoted BWTsg, is the string corresponding to last column of the matrix whose
rows are the | S|+ 1 rotations of S$ sorted lexicographically, where$ € ¥ isa termination
symbol smaller than the others.

This definition immediately gives an algorithm for constructing the Burrows-Wheeler transform
in time O(|S|* log(|S])) and space O(]S|?) . It also allows to see that the Burrows-
Wheeler is a permutation of S.

But this naive bound can greatly enhanced by making the following observation.

@ Key idea. The order of the lexicographically sorted rotations of | S| is the
order of its lexicographically sorted suffixes.

The BWT is thus highly related to the suffix array, and can also be defined relatively.

Definition 1 (Burrows-Wheeler transform, alternative definition). The Burrow-
Wheeler transform of a string S, denoted BWTg, is the string BWTg of length (|S|+1)
defined by

lf SAS [2] >0

otherwise

(BWTs) = {?SASM‘”

This definition gives a linear time algorithm for the computation of the Burrow-Wheeler transform.

¢ Reversibility

Recall that the purpose of the Burrows-Wheeler transform of a string aims to describes it with
an as-small-as-possible description. It is thus of upmost importance that one can recover the
original string from its transform.

Reconstructing the BW matrix This approach consists in retrieving the BW matrix from
the transform, and then return the first row deprived from its first character, which is $ by
construction.

Given BWT g, which correspond to the last column of the BW matrix, one can easily
reconstruct the first column. Indeed, we know that the rows of the matrix are lexicographically
sorted so the first column correspond to the lexicographically sorted letters. Easy. Let’s iterate
this reasoning. The first two columns of the BW matrix correspond of the 2-mers of S$ seen
as a circular word, sorted lexicographically. So, if we are able to recover these 2-mers from the
first and last column, we get one step further. Here is how: as a row 7 represents rotations
of S$, we get that r[0] is preceeded by r[—1] is the circular world S$, ie. that r[—1]r[0] isa
2-mers of the circular world S$. We then continue with 3-mers, 4-mers, until the final step
that consists in sorting the (S| 4 1)-mers of S$. Formally, this gives the following algorithm.

23

ALG — pattern matching I1. Preprocessing strings

Algorithm 12: Inverting the Burrow-Wheeler transform (naive)
Input: The BW transform BWT g of some string S
Output: The string S

r bwm < EMPTYMATRIX

: loop (S| + 1) times

bwm < [bwm | asColumn(BWTg)]
LEXSORTROWS (bwm)

s: return bwm/[0][1..]

£ ow R

The former algorithm perform (|.S| + 1) sorts of rows. As comparing two rows requires
O(]S]) time, the overall running time is O(|S|? - log|T|). It also requires O(|S|?) space

to store the matrix

By leveraging the LF mapping While the former algorithm is great to get familiar with
the BW transform, its time and space complexities are prohibitive. We propose here another
construction that relies and the following central property of the BW transform, known as the
LF-mapping — standing for LastFirst-mapping.

Lemma 12 (LF-mapping). For every character a. € %, the i-th occurence of a in L and the i-th
occurrence of a in F correspond to the same character in T

Proof. Fora € X,letaX <jex aY be two suftixes of T'. Clearly, ordering of the suffixes
holds if and only if X <|ex Y. So, there is a bijection from the suffixes that start with a and
those that are preceeded with a that preserves the relative order of these suffixes. [|

- "B
- i v, .

b o]

This property allows to reconstruct S directly from BWT g, by navigating between the
first (F) and last (L) column of the matrix, preventing the need of huge sorts and matrix
reconstruction. Starting by $, we will iteratively find the preeceding character in S$, hence
reconstructing S. The two ingredients that operate are (x) the row mapping, that allows to
find the preceeding character of any letter occurence in /' by reading the character of L within
the same row, and (2) the LF-mapping property, that allows to go from a character of L to the
same in F'. In order to make the LF-mapping step efficient, we store two auxiliary structures
that are trivially computable in linear time:

* Ris the rank array, and is such that the letter seen at position 7 in BWT g is the R[i]-th
of its kind to appear in BWT g (going left-to-right). Formally,

Rli]| = {j | j €[0..i], (BWTs)[;; = (BWTs)5 s

24

ALG — pattern matching I1. Preprocessing strings

* (' is the cumulative count map, such that for x € ¥ U {$} the number C[z] is the
amount of letters of BWT g that are strictly lexicographically smaller than . Formally,

Cla] =[{j1Jj €[0S +1),(BWTs)[j <iex z}-
Equivalently, this is the index of the first occurence of the character = in F'.

This gives the following algorithm for the BW transform inversion, that no longer relies on
the BW transform alone, but on the FM-index, that augments the BW transform with the two
aforementioned arrays.

Algorithm 13: Inverting the Burrow-Wheeler transform (fast)

Input: The FM-index (BWTg, R, C') of astring S.
Output: The string S such that BWTg = L

VRS ”$”,Z'row —0
: loop | S| times

prec < BWTgirow]

S < prec+ S

irow — LEMAPPING (Zroyw)
return S

v R owoR

: function LFMArrING(3)
: L +— C[BWTgi]] + R[i] — 1 > Ranks starts at 1 while indexes at O (hence —1

o N

[GORED

1$ dAL [SIA] [§la] [S[A] [$]A
AN N AN AW (AN AN (KN
AN AN Tan IaIWE (AN TAINE (8N
A AG L\ KNG AR\ A RN
g B3NS/ 8 \ald /ng])

NIA INJAL INJAY (VA Al/ InIA] INIA
WA Nl WAl (Al VAL IN[A INIA] |

€ Pattern matching with the FM-index

Perhaps surprisingly, we just saw the core mecanism to search for a pattern using the FM-index.
Afterall, inverting the BW transform was exactly the task of recovering the unique (|.S| + 1)
long substring of S$ that ends with $. We generalize the idea.

Let P = po - - - p|p|—1 be the pattern to search. We will update iteratively the index inn
and éyqz such that at the k-th iteration the letters of FJ; . ;1 that(x) are equal to p|p|_,
and (2) are followed by p| p|—j11--P|p|—1 in S$. Therefore, we start by locating the occurences
of p|p| in I using the cumulative count array: they form the range

[imin--imaz] = [C[pp|].-CnextSmallestLetter(p p|)])-

Then, we look at the corresponding range within L and shorten it by making its extremities to
be the first and last occurences of p| p_1 in L. This range is then mapped back to F" using the
LF-mapping, and now correspond to a range of contiguous p|p|_; in F'. The process is then

7.5

ALG — pattern matching [1l. Preprocessing strings

iterated. Atany point, if the range becomes empty this means that P doesn’t match anywhere
is S. At the end, all the people in the range are matches. Formally,

Algorithm 14: Pattern matching on the BW transform
Input: The FM-index (BWTg, R, C') of a string S, a pattern P.
v (imins tmaz) < (C[P_1j], C[nextSmallestLetter(F_y))] — 1)
2 if (imina imaz) = | then
3: return False (resp. 0) > Membership (rvesp. Count)
4:
s: fork € [0..|P| — 1) in reverse order do
6: oldRange < [imin--imaz]
7 imin ¢ FirsTOCcWiTiin(Py,, LloldRange])
8: imaz 4 LastOccWitnin(Py, LloldRange])
9: if (Zmzna imaw) = 1 then
10: L return False (resp. 0) > Membership (resp. Count)
1w (imin, tmaz) < (LEMAPPING (Gmin,), LEMAPPING (G4n))
r: return True (resp. imaz — tmin + 1) > Membership (resp. Count)

The pattern search is done in time O(| P| - € (FIRsTOccWITHIN)), which is O(|P| - |S]).
This complexity can be enhanced by refining the rank array, and having one such array per
letter. Namely, we define || such arrays by

Ve € 5, Rofi] = {7 | § € [0-1], (BWTs)yy = 2}
This allows to get rid of the FIRsTOccWrTHIN(ZH 24), giving the corresponding algorithm.

Algorithm 15: (better) Pattern matching on the BW transform ——
Input: The FM-index (BWTg, {R; }zex, C) of astring S, a pattern P.

v (Gmins tmaz) < (C[P_1j], C[nextSmallestLetter(P_y))] — 1)
2 if (imin, ’imaw) = 1 then

3 return False (resp. 0) > Membership (resp. Count)
4:

s: fork € [0..|P| — 1) in reverse order do

6: Tmin Rp[k] [imin — 1] +1

7 Tmaz < RP[k] [imam]

8: if i > Tmaz then

9: L return False (resp. 0) > Membership (rvesp. Count)
10: (4min, tmaz) — (LEMAPPING (%min), LEMAPPING (min))

u: return True (resp. tmaz — min + 1) > Membership (resp. Count)

In order to locate occurences, one can simply add a suffix array (Z2 . The complexity of
reporting the occurences is then O(#occs).

o Compression property of the BWT

* The occurrences of the suffixes of 7" that starts with X will, by definition of SA, appear
contiguously in the suffix array. We call this section the X-interval. => many aX in
T implies many in X-interval, which gives good chance of runs. T has many repeated

26

m

X m
: A

a (e

m
5
=)
-

Ex. §¥]

m
x

HH

3

m
x

4

m m
B
) &
(=] (&,]

ALG — pattern matching I1. Preprocessing strings

substrings => many U-intervals mostly same character - L = bwt(T) has few runs =>
runlength encoding (RLE) is good

An example: the U-interval for U= he+emptyspace in an English text -> many the’s, some
he, she, The => long runs of ’t’, cutted by some h, s, T.

RLE.

MoveToFront.

IT

Compressing the BWT: Move-to-Front 2202 e
Given a text T over an alphabet T = [1, o], the MTF e o9l o el b bl
encoding MTF(T) of the text is computed as follows BWT [afb[s[c]elo]u]a]afa]a]e]s]

® start with a list X = (1), £[2],...,E[g] mX=¢ahbe

® scan text from left to right, for character T[i] ® MTF—2and X = a,5,b.c

= append position of T[i] in X to MTF(T) and

= move T[] to front of X " MTF=23and X =b,a $c

®» MTF=233and X =%,b,a,c

" MTF=2334and X =c,$,b,a

" MTF=23341and X =c,4%,b.a
» MTF=233411and X =c.%,b,a
L

= MTF encoding can easily be reverted £.)

® consists of many small numbers

® runs are preserved

= yse Huffman on encoding © no theoretica
improvement but good in practice " MTF=23341131411121

WA E0E--2E Fiorian Kurpicz | Tast Indazing | 06 Burows-Whesle Transiom Iretittn of Thanrbeal infoematice, Algorithm Eng nesring

e Subsampling
¢ Subsampling rank, subsampling SA (+ resolving holes). cf s68 Pierre.

B Searching over sketched space

€ Bloom filters

Quotient filters

B Chapter exercises

Find an instance (.9, k) for which the construction of the index takes O(|S|?).

By decomposing a pattern P into pieces of length at most k, devise an algorithm that search
for long patterns based on k-mer indexes. Estimate its complexity, and conclude.

Give a mathematical formula or an algorithm that computes jie, given kmer.

Derive the O(|%[¥ + |S|) space requirement of the alternative approach for k-mer indexing
Propose an algorithm that tests whether P is a prefix of some string §. What s its complexity?
Prove the (tight) worst-case time complexity of Algorithm 4.

Prove the (tight) upperbound on the number of leaves in the trie produced by Algorithm 4.

Show that, remarkably, the compact trie of Suffs(S$) only admit branching internal nodes.

27

ALG — pattern matching [1l. Preprocessing strings

What would be the space needed by the suffix trie of the human genome? Of an E. Coli
genome?

Build the suffix trie of “abracadabra”.

Show that, remarkably, the compact trie of Suffs(S$) only admit branching internal nodes.
Make these slight changes explicit, and argue they have no impact on the complexity.
Propose an algorithm for COUNTCOVEREDLEAVES.

Propose an algorithm for construction the suffix trie that still run in O(|S|?) time but allow
for a O(|P|) time algorithm for Count.

Adapt the construction of the suffix trie so that LocateOne can be solved in O(| P|) time.
Adapt the algorithms from subsection X and Y, so that they run directly on suffix trees.
Shows that we never call NEXTSTEPDFS when the DFS is finished.

(hard) Let P and S be two random strings such that P appears exactly once in S. Show
that the expected time for comparing P to some S[sa[;,,.,,]..) i constant. Conclude on the
expected running time complexity.

Propose an instance for the binary search algorithm where £ is never updated until the very
last iteration.

Propose an algorithm that build the LCP array of .S using the suffix tree of S
Derive these complexities after expliciting the algorithm derived from the definion.
Prove step correctness of steps 6/7

Propose an algorithm for LocateAll that relies on the FM-index, augmented with a suffix array.

28

	I Introduction
	II Preliminaries
	Maths symbols
	Stringology stuff (alphabet, prefix)
	Landau notation
	III Preprocessing strings
	Kmer indexing
	Suffix tries, and their compaction
	Tries
	Suffix trie
	Suffix tree
	Linear time construction of the suffix tree
	Querying the suffix trie
	Pattern matching
	Other applications

	Querying the suffix tree
	Generalizing suffix trees to sets of strings
	Discussion

	Suffix array
	Searching the array
	Speeding up comparisions
	Enhancing the suffix array

	Searching over compressed space
	Compressing repetitive strings
	The Burrow-Wheeler transform
	Reversibility

	Pattern matching with the FM-index
	Compression property of the BWT
	Subsampling

	Searching over sketched space
	Bloom filters

