

Towards subquadratic

data structures for large genome-distance matrices with quick retrieval

Léo Ackermann¹, Pierre Peterlongo¹, Karel Břinda¹

¹ Inria, Genscale, Rennes

DSB Workshop, 5th March 2025

 ¹National Center for Biotechnology Information (*https://ncbi.nlm.nih.gov*)
²Hunt et. al. BioRxiv, 2024.
³Blackwell et. al. PLOS Biology, 2021.
⁴Howe et. al. Bioinformatics, 2002.
⁵Lees et. al. Genome Research, 2019.
⁶Ondov et. al. Genome Biology, 2016.
⁷Baker et. al. Genome Biology, 2019.
¹Pairwise distance matrices

¹National Center for Biotechnology Information (*https://ncbi.nlm.nih.gov*) ²Hunt et. al. BioRxiv, 2024. ³Blackwell et. al. PLOS Biology, 2021. ⁴Howe et. al. Bioinformatics, 2002. ⁵Lees et. al. Genome Research, 2019. ⁶Ondov et. al. Genome Biology, 2016. ⁷Baker et. al. Genome Biology, 2019.

 ¹National Center for Biotechnology Information (*https://ncbi.nlm.nih.gov*)
²Hunt et. al. BioRxiv, 2024.
³Blackwell et. al. PLOS Biology, 2021.
⁴Howe et. al. Bioinformatics, 2002.
⁵Lees et. al. Genome Research, 2019.
⁶Ondov et. al. Genome Biology, 2016.
⁷Baker et. al. Genome Biology, 2019.
¹Pairwise distance matrices

Efficient computation of distance matrices Sketching (e.g., Mash⁶, Dashing⁷) and parallel computing make it tractable

¹National Center for Biotechnology Information (*https://ncbi.nlm.nih.gov*) ²*Hunt et. al.* BioRxiv, 2024. ³*Blackwell et. al.* PLOS Biology, 2021. ⁴*Howe et. al.* Bioinformatics, 2002. ⁵*Lees et. al.* Genome Research, 2019. ⁶*Ondov et. al.* Genome Biology, 2016. ⁷*Baker et. al.* Genome Biology, 2019.

Storage of genome distances is challenging

Size of bacterial collections increases exponentially

NCBI-bact¹: 2.4M genomes ► 2.8 · 10¹² distances, 11 TeraBytes

¹National Center for Biotechnology Information (*https://ncbi.nlm.nih.gov*) ²*Hunt et. al.* BioRxiv, 2024. ³*Blackwell et. al.* PLOS Biology, 2021.

Storage of genome distances is challenging

Size of bacterial collections increases exponentially

NCBI-bact¹: 2.4M genomes

► 2.8 · 10¹² distances, 11 TeraBytes

Other collections.

- AllTheBacteria²: 2.4M genomes
 - ► 2.8 · 10¹² distances, 11 TeraBytes
- 661k-collection³: 661k genomes
 - ► 2.2 · 10¹¹ distances, 880 GigaBytes

¹National Center for Biotechnology Information (*https://ncbi.nlm.nih.gov*) ²*Hunt et. al.* BioRxiv, 2024. ³*Blackwell et. al.* PLOS Biology, 2021.

Storage of genome distances is challenging

Size of bacterial collections increases exponentially

NCBI-bact¹: 2.4M genomes

► 2.8 · 10¹² distances, 11 TeraBytes

Other collections.

- AllTheBacteria²: 2.4M genomes
 - ► 2.8 · 10¹² distances, 11 TeraBytes
- 661k-collection³: 661k genomes
 - ► 2.2 · 10¹¹ distances, 880 GigaBytes

S Generic matrix compression techniques

Matrix-specific compression techniques are restricted to sparse and low-rank matrices, and are not directly applicable

¹National Center for Biotechnology Information (*https://ncbi.nlm.nih.gov*) ²*Hunt et. al.* BioRxiv, 2024. ³*Blackwell et. al.* PLOS Biology, 2021.

Many variants can be framed

Operability. A set of operations to interact with the data structure, with constraints e.g., random access, sequencial access, nothing, ...

Many variants can be framed

- Operability. A set of operations to interact with the data structure, with constraints e.g., random access, sequencial access, nothing, ...
- Accuracy. Whether the structure stores exact or approximate distances

Many variants can be framed

- Operability. A set of operations to interact with the data structure, with constraints e.g., random access, sequencial access, nothing, ...
- Accuracy. Whether the structure stores exact or approximate distances
- Dynamicity. Whether the structure can(not) be updated without recomputing everything

Many variants can be framed

- Operability. A set of operations to interact with the data structure, with constraints e.g., random access, sequencial access, nothing, ...
- Accuracy. Whether the structure stores exact or approximate distances
- Dynamicity. Whether the structure can(not) be updated without recomputing everything

O Focus of this presentation

STATIC COMPRESSION OF PAIRWISE DISTANCE MATRICES OF SINGLE SPECIES COLLECTIONS, WITH CONSTANT-TIME RANDOM ACCESS

Model. There is no horizontal gene transfer and genomes are of infinite size.

- Mutations always occur at a different genome location (hence not reversible!)
- ▶ Good model at very small time scale (eg. clinical outbreak)

Model. There is no horizontal gene transfer and genomes are of infinite size.

- Mutations always occur at a different genome location (hence not reversible!)
- ▶ Good model at very small time scale (eg. clinical outbreak)

Model. There is no horizontal gene transfer and genomes are of infinite size.

- ▶ Mutations always occur at a different genome location (hence not reversible!)
- ▶ Good model at very small time scale (eg. clinical outbreak)

High level idea

(1) Recover the phylogenetic tree,(2) Compute pairwise distances from it

¹*Kimura*. Genomics, 1969. ²*Saitou et. al.* Molecular Biology and Evolution, 1987. Method for the infinite sites model

Model. There is no horizontal gene transfer and genomes are of infinite size.

- ▶ Mutations always occur at a different genome location (hence not reversible!)
- ▶ Good model at very small time scale (eg. clinical outbreak)

🅊 High level idea

(1) Recover the phylogenetic tree,(2) Compute pairwise distances from it

Step 1. We observe that

Model. There is no horizontal gene transfer and genomes are of infinite size.

- ▶ Mutations always occur at a different genome location (hence not reversible!)
- ▶ Good model at very small time scale (eg. clinical outbreak)

💡 High level idea

(1) Recover the phylogenetic tree,(2) Compute pairwise distances from it

Step 1. We observe that

 $\mathcal{H}(G,G') = \sum_{(x,y)\in\mathcal{T}(G\to G')} \mathcal{H}(x,y) = \delta_{\mathcal{T}}(G,G'),$

In these conditions, the **Neighbor-joining**² algorithm will exactly **retrieve the tree** from the leave pairwise distances

¹*Kimura*. Genomics, 1969. ²*Saitou et. al.* Molecular Biology and Evolution, 1987.

Method for the infinite sites model

Objective. Compute $\delta(C, E)$

► Naive algorithm in time O(depth)

¹Genome-Scale Algorithm Design (2nd edition). *Mäkinen et. al.* 2023.

Objective. Compute $\delta(C, E)$

- ▶ Naive algorithm in time O(depth)
- **1.** Expressing $\delta(C, E)$ with root-to-node distances $\delta_T(C, E) = \operatorname{rtn}(C) + \operatorname{rtn}(E) - 2 * \operatorname{rtn}(\operatorname{lca}(C, E))$
 - ▶ Storing root-to-node distances requires linear space

¹Genome-Scale Algorithm Design (2nd edition). *Mäkinen et. al.* 2023.

Objective. Compute $\delta(C, E)$

- ▶ Naive algorithm in time O(depth)
- **1.** Expressing $\delta(C, E)$ with root-to-node distances $\delta_T(C, E) = \operatorname{rtn}(C) + \operatorname{rtn}(E) - 2 * \operatorname{rtn}(\operatorname{lca}(C, E))$
 - ► Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time This takes constant time at the cost of extra linear space¹

¹Genome-Scale Algorithm Design (2nd edition). *Mäkinen et. al.* 2023.

Objective. Compute $\delta(C, E)$

- ► Naive algorithm in time *O*(*depth*)
- **1.** Expressing $\delta(C, E)$ with root-to-node distances $\delta_T(C, E) = \operatorname{rtn}(C) + \operatorname{rtn}(E) - 2 * \operatorname{rtn}(\operatorname{lca}(C, E))$
 - Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time This takes constant time at the cost of extra linear space¹

Overall. The pairwise **Hamming distance** between genomes following the **infinite sites model** can be stored in **linear space** with **constant-time random access**, after a linear time preprocessing, without any loss

¹Genome-Scale Algorithm Design (2nd edition). *Mäkinen et. al.* 2023.

Pairwise distance matrix

Pairwise distance matrix

- ▶ The tree distance can be stored in linear space while providing *O*(1) random access
- ▶ **Problem.** How to store the remainder?
Mash distance computation

Mash distance computation

1. compute the k-mer sets K_A and K_B of the genomes A and B

Mash distance computation

- 1. compute the k-mer sets K_A and K_B of the genomes A and B
- 2. get an (unbiased) estimate \hat{j} of the Jaccard index $j = \frac{|K_A \cap K_B|}{|K_A \cup K_B|}$, using MinHash²

▶ Much faster than computing the Jaccard distance extensively

Mash distance computation

- 1. compute the k-mer sets K_A and K_B of the genomes A and B
- 2. get an (unbiased) estimate \hat{j} of the Jaccard index $j = \frac{|K_A \cap K_B|}{|K_A \cup K_B|}$, using MinHash²
 - Much faster than computing the Jaccard distance extensively
- 3. convert it into the evolutionary distance $d(A, B) = -1/k \cdot \log \left(\frac{2\hat{j}}{\hat{i}+1}\right)$
 - ▶ Morally, d(A, B) is the SNP evolution rate mapping K_A to K_B in one epoch

¹Ondov et. al. Genome Biology, 2016. ²Broder. Compression and complexity of sequences, 1997.

Mash distance computation

- 1. compute the k-mer sets K_A and K_B of the genomes A and B
- 2. get an (unbiased) estimate j of the Jaccard index j = |K_A∩K_B|/|K_A∪K_B|, using MinHash²
 ▶ Much faster than computing the Jaccard distance extensively

- 3. convert it into the evolutionary distance $d(A, B) = -1/k \cdot \log \left(\frac{2ij}{i+1}\right)$
 - Morally, d(A, B) is the SNP evolution rate mapping K_A to K_B in one epoch

Lemma. Mash is an estimator of $d^*(A, B) = -1/k \cdot \log\left(\frac{2 \cdot j}{j+1}\right)$, hence can be associated to a standard error

For fixed Mash parameters k and s,

For fixed Mash parameters k and s,

For fixed Mash parameters k and s,

Absolute error. If $d^*(A, B) \le \tau_A$, the biological signal is completely masked by the standard error of the estimator

• Any signal smaller than τ_A can be ignored

For fixed Mash parameters k and s,

Absolute error. If $d^*(A, B) \le \tau_A$, the biological signal is completely masked by the standard error of the estimator

• Any signal smaller than τ_A can be ignored

Relative error. For any d^* , the relative error made by the estimator is bigger than τ_R

► Relative errors smaller than τ_R do not perturb the signal d^*

(1) Any signal smaller than τ_A can be ignored (2) Relative errors smaller than τ_R do not perturb the signal d^*

(1) Any signal smaller than τ_A can be ignored (2) Relative errors smaller than τ_R do not perturb the signal d^*

(1) Any signal smaller than τ_A can be ignored (2) Relative errors smaller than τ_R do not perturb the signal d^*

(1) Any signal smaller than τ_A can be ignored (2) Relative errors smaller than τ_R do not perturb the signal d^*

(1) Any signal smaller than τ_A can be ignored (2) Relative errors smaller than τ_R do not perturb the signal d^*

(1) Any signal smaller than τ_A can be ignored (2) Relative errors smaller than τ_R do not perturb the signal d^*

(1) Any signal smaller than τ_A can be ignored (2) Relative errors smaller than τ_R do not perturb the signal d^*

Thresholding. Map all values smaller than τ_A to 0

Quantization. Map x to repr(x) if the induced relative error is smaller than τ_R

- ▶ Only store index(repr(x)) $\in \mathbb{N}$ to **gain space**
- ▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 2. A the-smaller-the-lighter float format

Observation. The **values** of the remainder **are much smaller** than in the original distance matrix

► About 2 orders of magnitude smaller

Trick 2. A the-smaller-the-lighter float format

Observation. The **values** of the remainder **are much smaller** than in the original distance matrix

- About 2 orders of magnitude smaller
- ▶ Combined with absolute thresholding, fewer non-zero digits

Trick 2. A the-smaller-the-lighter float format

Observation. The **values** of the remainder **are much smaller** than in the original distance matrix

- About 2 orders of magnitude smaller
- Combined with absolute thresholding, fewer non-zero digits

Mash distance matrix

🏶 Methods for real data · Lossless compression

Mash distance matrix

For similar enough genomes, taxonomy can be defined with distance thresholds¹

► e.g., Species = >90% ANI = <0.05 Mash distance Strain = >99.99% ANI = <0.0001 Mash distance</p>

For similar enough genomes, taxonomy can be defined with distance thresholds¹

► e.g., Species = >90% ANI = <0.05 Mash distance Strain = >99.99% ANI = <0.0001 Mash distance</p>

No threshold

For similar enough genomes, taxonomy can be defined with distance thresholds¹

► e.g., Species = >90% ANI = <0.05 Mash distance Strain = >99.99% ANI = <0.0001 Mash distance</p>

No threshold

Beyond-strain threshold (<10⁻⁴)

¹*Rodriguez et. al.* mBio, 2024

For similar enough genomes, taxonomy can be defined with distance thresholds¹

► e.g., Species = >90% ANI = <0.05 Mash distance Strain = >99.99% ANI = <0.0001 Mash distance</p>

No threshold

Beyond-strain threshold (<10⁻⁴)

Beyond-genomovar threshold (<5.10⁻³)

¹*Rodriguez et. al.* mBio, 2024

For similar enough genomes, taxonomy can be defined with distance thresholds¹

► e.g., Species = >90% ANI = <0.05 Mash distance Strain = >99.99% ANI = <0.0001 Mash distance</p>

No threshold

Beyond-strain threshold (<10⁻⁴)

Beyond-genomovar threshold (<5.10⁻³)

Beyond-species threshold (<10⁻²)

¹*Rodriguez et. al.* mBio, 2024 Methods for real data · Lossy compression

For similar enough genomes, taxonomy can be defined with distance thresholds¹

► e.g., Species = >90% ANI = <0.05 Mash distance Strain = >99.99% ANI = <0.0001 Mash distance</p>

Storing sparse matrices. Matrices can be represented in O(#(non-zero-entries)) space

¹*Rodriguez et. al.* mBio, 2024

Mash distance matrix

🏶 Methods for real data · Lossy compression

"Lossless" compression of pairwise distance matrices

Data.

10k Streptococcus pneumoniae genomes from the 661k collection¹. Distances estimated using Mash² with $k = 21, s = 10^4$, which gives $\tau_A = 10^{-6}, \tau_B = 10^{-2}$

¹Blackwell et. al. PLOS Biology, 2021. ²Ondov et. al. Genome Biology, 2016. ³ Shaw et. al. Nature Methods, 2023. ⁴Baker et. al. Genome Biology, 2019. ⁵https://gitlab.inria.fr/lackerma/nwk2phy

"Lossless" compression of pairwise distance matrices

Data.

10k Streptococcus pneumoniae genomes from the 661k collection¹. Distances estimated using Mash² with $k=21,s=10^4$, which gives $\tau_A=10^{-6}, \tau_B=10^{-2}$

We observed similar results on other species - 10k Neisseria gonorrhoeae - 10k Escherichia coli and with other distance estimators - Skani³ - Dashing⁴

¹Blackwell et. al. PLOS Biology, 2021. ²Ondov et. al. Genome Biology, 2016. ³ Shaw et. al. Nature Methods, 2023. ⁴Baker et. al. Genome Biology, 2019. ⁵https://gitlab.inria.fr/lackerma/nwk2phy

"Lossless" compression of pairwise distance matrices

Data.

10k *Streptococcus pneumoniae* genomes from the 661k collection¹. Distances estimated using Mash² with k = 21, $s = 10^4$, which gives $\tau_{A} = 10^{-6}, \tau_{P} = 10^{-2}$

We observed similar results on other species - 10k Neisseria aonorrhoeae - 10k Escherichia coli and with other distance estimators - Skani³ - Dashina⁴

Software.

The whole pipeline is implemeted in the (prototype) tool phdcomp Several components are of independent interest (eg. nwk2phy⁵)

¹Blackwell et. al. PLOS Biology, 2021. ²Ondov et. al. Genome Biology, 2016. ³ Shaw et. al. Nature Methods, 2023. ⁴Baker et. al. Genome Biology, 2019. ⁵https://gitlab.inria.fr/lackerma/nwk2phy

Conclusion

Conclusion

Context. Many **downstream analyses** rely on **pairwise distance matrices**, that are already challenging to store due to their **quadratic size**

Approach. We aim to leverage the **specific structure** of genomic data, that can extensively be **explained by the underlying phylogeny**

First results.

- Theory. Pairwise matrices of genome collections following the *infinite sites model* can be stored in **linear space** supporting **constant-time** queries
- Practice. Lossless compression of 10k s.-pneumo. pairwise matrices with constant-time random access saves around 70% space

What's next? Generalization to many-species collections, and larger scale experiments

▶ This is where we expect the subquadraticity to arise

Thank you for your attention!

Léo Ackermann Pierre Peterlongo Karel Břinda

Towards subquadratic

data structures for large genome-distance matrices with quick retrieval

