
0/15

G E N S C A L E

Towards subquadratic
data structures for large genome-distance matrices with quick retrieval

Léo Ackermann1, Pierre Peterlongo1, Karel Břinda1

DSB Workshop, 5th March 20251 Inria, Genscale, Rennes

Importance of pairwise distance matrices

b Pairwise distance matrices 1/15

W Efficient computation of distance matrices
Sketching (e.g., Mash6, Dashing7) and parallel computing make it tractable

1National Center for Biotechnology Information (https://ncbi.nlm.nih.gov) 2Hunt et. al. BioRxiv, 2024. 3Blackwell et. al. PLOS Biology, 2021. 4Howe et. al.
Bioinformatics, 2002. 5Lees et. al. Genome Research, 2019. 6Ondov et. al. Genome Biology, 2016. 7Baker et. al. Genome Biology, 2019.

Importance of pairwise distance matrices

b Pairwise distance matrices 1/15

W Efficient computation of distance matrices
Sketching (e.g., Mash6, Dashing7) and parallel computing make it tractable

1National Center for Biotechnology Information (https://ncbi.nlm.nih.gov) 2Hunt et. al. BioRxiv, 2024. 3Blackwell et. al. PLOS Biology, 2021. 4Howe et. al.
Bioinformatics, 2002. 5Lees et. al. Genome Research, 2019. 6Ondov et. al. Genome Biology, 2016. 7Baker et. al. Genome Biology, 2019.

Importance of pairwise distance matrices

b Pairwise distance matrices 1/15

W Efficient computation of distance matrices
Sketching (e.g., Mash6, Dashing7) and parallel computing make it tractable

1National Center for Biotechnology Information (https://ncbi.nlm.nih.gov) 2Hunt et. al. BioRxiv, 2024. 3Blackwell et. al. PLOS Biology, 2021. 4Howe et. al.
Bioinformatics, 2002. 5Lees et. al. Genome Research, 2019. 6Ondov et. al. Genome Biology, 2016. 7Baker et. al. Genome Biology, 2019.

Importance of pairwise distance matrices

b Pairwise distance matrices 1/15

W Efficient computation of distance matrices
Sketching (e.g., Mash6, Dashing7) and parallel computing make it tractable

1National Center for Biotechnology Information (https://ncbi.nlm.nih.gov) 2Hunt et. al. BioRxiv, 2024. 3Blackwell et. al. PLOS Biology, 2021. 4Howe et. al.
Bioinformatics, 2002. 5Lees et. al. Genome Research, 2019. 6Ondov et. al. Genome Biology, 2016. 7Baker et. al. Genome Biology, 2019.

Storage of genome distances is challenging

b Pairwise distance matrices 2/15

¢ Size of bacterial collections increases exponentially

102

2000

104

1012 Number of assemblies in NCBI database
Size of pairwise distance matrices (bytes)

20242012

(lo
g.

 sc
al

e)

NCBI-bact1: 2.4M genomes
▶ 2.8 · 1012 distances, 11 TeraBytes

Other collections.
– AllTheBacteria2: 2.4M genomes
▶ 2.8 · 1012 distances, 11 TeraBytes

– 661k-collection3: 661k genomes
▶ 2.2 · 1011 distances, 880 GigaBytes

; Generic matrix compression techniques
Matrix-specific compression techniques are restricted to sparse and low-rank matrices, and
are not directly applicable

1National Center for Biotechnology Information (https://ncbi.nlm.nih.gov) 2Hunt et. al. BioRxiv, 2024. 3Blackwell et. al. PLOS Biology, 2021.

Storage of genome distances is challenging

b Pairwise distance matrices 2/15

¢ Size of bacterial collections increases exponentially

102

2000

104

1012 Number of assemblies in NCBI database
Size of pairwise distance matrices (bytes)

20242012

(lo
g.

 sc
al

e)

NCBI-bact1: 2.4M genomes
▶ 2.8 · 1012 distances, 11 TeraBytes

Other collections.
– AllTheBacteria2: 2.4M genomes
▶ 2.8 · 1012 distances, 11 TeraBytes

– 661k-collection3: 661k genomes
▶ 2.2 · 1011 distances, 880 GigaBytes

; Generic matrix compression techniques
Matrix-specific compression techniques are restricted to sparse and low-rank matrices, and
are not directly applicable

1National Center for Biotechnology Information (https://ncbi.nlm.nih.gov) 2Hunt et. al. BioRxiv, 2024. 3Blackwell et. al. PLOS Biology, 2021.

Storage of genome distances is challenging

b Pairwise distance matrices 2/15

¢ Size of bacterial collections increases exponentially

102

2000

104

1012 Number of assemblies in NCBI database
Size of pairwise distance matrices (bytes)

20242012

(lo
g.

 sc
al

e)

NCBI-bact1: 2.4M genomes
▶ 2.8 · 1012 distances, 11 TeraBytes

Other collections.
– AllTheBacteria2: 2.4M genomes
▶ 2.8 · 1012 distances, 11 TeraBytes

– 661k-collection3: 661k genomes
▶ 2.2 · 1011 distances, 880 GigaBytes

; Generic matrix compression techniques
Matrix-specific compression techniques are restricted to sparse and low-rank matrices, and
are not directly applicable

1National Center for Biotechnology Information (https://ncbi.nlm.nih.gov) 2Hunt et. al. BioRxiv, 2024. 3Blackwell et. al. PLOS Biology, 2021.

Problem formulation

b Pairwise distance matrices 3/15

Many variants can be framed
Operability. A set of operations to interact with the data structure, with constraints
e.g., random access, sequencial access, nothing, . . .

Accuracy. Whether the structure stores exact or approximate distances
Dynamicity. Whether the structure can(not) be updated without recomputing everything

◎ Focus of this presentation

STATIC COMPRESSION OF PAIRWISE DISTANCE MATRICES OF SINGLE SPECIES
COLLECTIONS, WITH CONSTANT-TIME RANDOM ACCESS

Problem formulation

b Pairwise distance matrices 3/15

Many variants can be framed
Operability. A set of operations to interact with the data structure, with constraints
e.g., random access, sequencial access, nothing, . . .
Accuracy. Whether the structure stores exact or approximate distances

Dynamicity. Whether the structure can(not) be updated without recomputing everything

◎ Focus of this presentation

STATIC COMPRESSION OF PAIRWISE DISTANCE MATRICES OF SINGLE SPECIES
COLLECTIONS, WITH CONSTANT-TIME RANDOM ACCESS

Problem formulation

b Pairwise distance matrices 3/15

Many variants can be framed
Operability. A set of operations to interact with the data structure, with constraints
e.g., random access, sequencial access, nothing, . . .
Accuracy. Whether the structure stores exact or approximate distances
Dynamicity. Whether the structure can(not) be updated without recomputing everything

◎ Focus of this presentation

STATIC COMPRESSION OF PAIRWISE DISTANCE MATRICES OF SINGLE SPECIES
COLLECTIONS, WITH CONSTANT-TIME RANDOM ACCESS

Problem formulation

b Pairwise distance matrices 3/15

Many variants can be framed
Operability. A set of operations to interact with the data structure, with constraints
e.g., random access, sequencial access, nothing, . . .
Accuracy. Whether the structure stores exact or approximate distances
Dynamicity. Whether the structure can(not) be updated without recomputing everything

◎ Focus of this presentation

STATIC COMPRESSION OF PAIRWISE DISTANCE MATRICES OF SINGLE SPECIES
COLLECTIONS, WITH CONSTANT-TIME RANDOM ACCESS

Ó Method for the infinite sites model

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

The infinite sites model1 of evolution

Ó Method for the infinite sites model 4/15

Model. There is no horizontal gene transfer and genomes are of infinite size.
▶ Mutations always occur at a different genome location (hence not reversible!)
▶ Good model at very small time scale (eg. clinical outbreak)

� High level idea
(1) Recover the phylogenetic tree,
(2) Compute pairwise distances from it

Step 1. We observe that

H(G,G′) =
∑

(x,y)∈T (G→G′) H(x, y) = δT (G,G′),

In these conditions, the Neighbor-joining2

algorithm will exactly retrieve the tree
from the leave pairwise distances

1Kimura. Genomics, 1969. 2Saitou et. al. Molecular Biology and Evolution, 1987.

Computing leave distance in constant-time

Ó Method for the infinite sites model 5/15

A B

C D

E

x

y z

t

Objective. Compute δ(C, E)
▶ Naive algorithm in time O(depth)

1. Expressing δ(C, E) with root-to-node distances
δT(C, E) = rtn(C) + rtn(E)− 2 ∗ rtn(lca(C, E))

▶ Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time
This takes constant time at the cost of extra linear space1

Overall. The pairwise Hamming distance between genomes following the infinite
sites model can be stored in linear space with constant-time random access, after a
linear time preprocessing, without any loss

1Genome-Scale Algorithm Design (2nd edition). Mäkinen et. al. 2023.

Computing leave distance in constant-time

Ó Method for the infinite sites model 5/15

A B

C D

E

x

y z

t

Objective. Compute δ(C, E)
▶ Naive algorithm in time O(depth)

1. Expressing δ(C, E) with root-to-node distances
δT(C, E) = rtn(C) + rtn(E)− 2 ∗ rtn(lca(C, E))

▶ Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time
This takes constant time at the cost of extra linear space1

Overall. The pairwise Hamming distance between genomes following the infinite
sites model can be stored in linear space with constant-time random access, after a
linear time preprocessing, without any loss

1Genome-Scale Algorithm Design (2nd edition). Mäkinen et. al. 2023.

Computing leave distance in constant-time

Ó Method for the infinite sites model 5/15

A B

C D

E

x

y z

t

Objective. Compute δ(C, E)
▶ Naive algorithm in time O(depth)

1. Expressing δ(C, E) with root-to-node distances
δT(C, E) = rtn(C) + rtn(E)− 2 ∗ rtn(lca(C, E))

▶ Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time
This takes constant time at the cost of extra linear space1

Overall. The pairwise Hamming distance between genomes following the infinite
sites model can be stored in linear space with constant-time random access, after a
linear time preprocessing, without any loss

1Genome-Scale Algorithm Design (2nd edition). Mäkinen et. al. 2023.

Computing leave distance in constant-time

Ó Method for the infinite sites model 5/15

A B

C D

E

x

y z

t

Objective. Compute δ(C, E)
▶ Naive algorithm in time O(depth)

1. Expressing δ(C, E) with root-to-node distances
δT(C, E) = rtn(C) + rtn(E)− 2 ∗ rtn(lca(C, E))

▶ Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time
This takes constant time at the cost of extra linear space1

Overall. The pairwise Hamming distance between genomes following the infinite
sites model can be stored in linear space with constant-time random access, after a
linear time preprocessing, without any loss
1Genome-Scale Algorithm Design (2nd edition). Mäkinen et. al. 2023.

Ô Methods for real data

Tree decomposition of distance matrices

Ô Methods for real data · Foundations 6/15

Challenge. Real genomes collections doesn’t follow the infinite sites model

▶ The tree distance can be stored in linear space while providing O(1) random access
▶ Problem. How to store the remainder?

Tree decomposition of distance matrices

Ô Methods for real data · Foundations 6/15

Challenge. Real genomes collections doesn’t follow the infinite sites model

▶ The tree distance can be stored in linear space while providing O(1) random access
▶ Problem. How to store the remainder?

Tree decomposition of distance matrices

Ô Methods for real data · Foundations 6/15

Challenge. Real genomes collections doesn’t follow the infinite sites model

▶ The tree distance can be stored in linear space while providing O(1) random access
▶ Problem. How to store the remainder?

Tree decomposition of distance matrices

Ô Methods for real data · Foundations 6/15

Challenge. Real genomes collections doesn’t follow the infinite sites model

▶ The tree distance can be stored in linear space while providing O(1) random access
▶ Problem. How to store the remainder?

Tree decomposition of distance matrices

Ô Methods for real data · Foundations 6/15

Challenge. Real genomes collections doesn’t follow the infinite sites model

▶ The tree distance can be stored in linear space while providing O(1) random access
▶ Problem. How to store the remainder?

Tree decomposition of distance matrices

Ô Methods for real data · Foundations 6/15

Challenge. Real genomes collections doesn’t follow the infinite sites model

▶ The tree distance can be stored in linear space while providing O(1) random access
▶ Problem. How to store the remainder?

Tree decomposition of distance matrices

Ô Methods for real data · Foundations 6/15

Challenge. Real genomes collections doesn’t follow the infinite sites model

▶ The tree distance can be stored in linear space while providing O(1) random access
▶ Problem. How to store the remainder?

A phylogenetic distance estimator: Mash1

Ô Methods for real data · Lossless compression 7/15

Mash distance computation

1. compute the k-mer sets KA and KB of the genomes A and B

2. get an (unbiased) estimate ĵ of the Jaccard index j = |KA∩KB|
|KA∪KB| , using MinHash2

▶ Much faster than computing the Jaccard distance extensively

3. convert it into the evolutionary distance d(A,B) = −1/k · log
(

2·̂j
ĵ+1

)
▶ Morally, d(A, B) is the SNP evolution rate mapping KA to KB in one epoch

Lemma. Mash is an estimator of d∗(A,B) = −1/k · log
(

2·j
j+1

)
, hence can be associated

to a standard error

⇒

1Ondov et. al. Genome Biology, 2016. 2Broder. Compression and complexity of sequences, 1997.

A phylogenetic distance estimator: Mash1

Ô Methods for real data · Lossless compression 7/15

Mash distance computation
1. compute the k-mer sets KA and KB of the genomes A and B

2. get an (unbiased) estimate ĵ of the Jaccard index j = |KA∩KB|
|KA∪KB| , using MinHash2

▶ Much faster than computing the Jaccard distance extensively

3. convert it into the evolutionary distance d(A,B) = −1/k · log
(

2·̂j
ĵ+1

)
▶ Morally, d(A, B) is the SNP evolution rate mapping KA to KB in one epoch

Lemma. Mash is an estimator of d∗(A,B) = −1/k · log
(

2·j
j+1

)
, hence can be associated

to a standard error

⇒

1Ondov et. al. Genome Biology, 2016. 2Broder. Compression and complexity of sequences, 1997.

A phylogenetic distance estimator: Mash1

Ô Methods for real data · Lossless compression 7/15

Mash distance computation
1. compute the k-mer sets KA and KB of the genomes A and B

2. get an (unbiased) estimate ĵ of the Jaccard index j = |KA∩KB|
|KA∪KB| , using MinHash2

▶ Much faster than computing the Jaccard distance extensively

3. convert it into the evolutionary distance d(A,B) = −1/k · log
(

2·̂j
ĵ+1

)
▶ Morally, d(A, B) is the SNP evolution rate mapping KA to KB in one epoch

Lemma. Mash is an estimator of d∗(A,B) = −1/k · log
(

2·j
j+1

)
, hence can be associated

to a standard error

⇒

1Ondov et. al. Genome Biology, 2016. 2Broder. Compression and complexity of sequences, 1997.

A phylogenetic distance estimator: Mash1

Ô Methods for real data · Lossless compression 7/15

Mash distance computation
1. compute the k-mer sets KA and KB of the genomes A and B

2. get an (unbiased) estimate ĵ of the Jaccard index j = |KA∩KB|
|KA∪KB| , using MinHash2

▶ Much faster than computing the Jaccard distance extensively

3. convert it into the evolutionary distance d(A,B) = −1/k · log
(

2·̂j
ĵ+1

)
▶ Morally, d(A, B) is the SNP evolution rate mapping KA to KB in one epoch

Lemma. Mash is an estimator of d∗(A,B) = −1/k · log
(

2·j
j+1

)
, hence can be associated

to a standard error

⇒

1Ondov et. al. Genome Biology, 2016. 2Broder. Compression and complexity of sequences, 1997.

A phylogenetic distance estimator: Mash1

Ô Methods for real data · Lossless compression 7/15

Mash distance computation
1. compute the k-mer sets KA and KB of the genomes A and B

2. get an (unbiased) estimate ĵ of the Jaccard index j = |KA∩KB|
|KA∪KB| , using MinHash2

▶ Much faster than computing the Jaccard distance extensively

3. convert it into the evolutionary distance d(A,B) = −1/k · log
(

2·̂j
ĵ+1

)
▶ Morally, d(A, B) is the SNP evolution rate mapping KA to KB in one epoch

Lemma. Mash is an estimator of d∗(A,B) = −1/k · log
(

2·j
j+1

)
, hence can be associated

to a standard error

⇒
1Ondov et. al. Genome Biology, 2016. 2Broder. Compression and complexity of sequences, 1997.

Synchronising float and Mash precision

Ô Methods for real data · Lossless compression 8/15

For fixed Mash parameters k and s,

Absolute error. If d∗(A,B) ≤ τA, the biological
signal is completely masked by the standard
error of the estimator

▶ Any signal smaller than τA can be ignored

Relative error. For any d∗, the relative error
made by the estimator is bigger than τR

▶ Relative errors smaller than τR do not perturb
the signal d∗

Synchronising float and Mash precision

Ô Methods for real data · Lossless compression 8/15

For fixed Mash parameters k and s,

Absolute error. If d∗(A,B) ≤ τA, the biological
signal is completely masked by the standard
error of the estimator

▶ Any signal smaller than τA can be ignored

Relative error. For any d∗, the relative error
made by the estimator is bigger than τR

▶ Relative errors smaller than τR do not perturb
the signal d∗

Synchronising float and Mash precision

Ô Methods for real data · Lossless compression 8/15

For fixed Mash parameters k and s,

Absolute error. If d∗(A,B) ≤ τA, the biological
signal is completely masked by the standard
error of the estimator
▶ Any signal smaller than τA can be ignored

Relative error. For any d∗, the relative error
made by the estimator is bigger than τR

▶ Relative errors smaller than τR do not perturb
the signal d∗

Synchronising float and Mash precision

Ô Methods for real data · Lossless compression 8/15

For fixed Mash parameters k and s,

Absolute error. If d∗(A,B) ≤ τA, the biological
signal is completely masked by the standard
error of the estimator
▶ Any signal smaller than τA can be ignored

Relative error. For any d∗, the relative error
made by the estimator is bigger than τR

▶ Relative errors smaller than τR do not perturb
the signal d∗

Trick 1. “Lossless” truncation and quantization of floats

Ô Methods for real data · Lossless compression 9/15

(1) Any signal smaller than τA can be ignored (2) Relative errors smaller than τR do not perturb the signal d∗

Thresholding. Map all values smaller than τA to 0
Quantization. Map x to repr(x) if the induced relative error is smaller than τR

▶ Only store index(repr(x)) ∈ N to gain space
▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 1. “Lossless” truncation and quantization of floats

Ô Methods for real data · Lossless compression 9/15

(1) Any signal smaller than τA can be ignored (2) Relative errors smaller than τR do not perturb the signal d∗

Thresholding. Map all values smaller than τA to 0
Quantization. Map x to repr(x) if the induced relative error is smaller than τR

▶ Only store index(repr(x)) ∈ N to gain space
▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 1. “Lossless” truncation and quantization of floats

Ô Methods for real data · Lossless compression 9/15

(1) Any signal smaller than τA can be ignored (2) Relative errors smaller than τR do not perturb the signal d∗

Thresholding. Map all values smaller than τA to 0

Quantization. Map x to repr(x) if the induced relative error is smaller than τR
▶ Only store index(repr(x)) ∈ N to gain space
▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 1. “Lossless” truncation and quantization of floats

Ô Methods for real data · Lossless compression 9/15

(1) Any signal smaller than τA can be ignored (2) Relative errors smaller than τR do not perturb the signal d∗

Thresholding. Map all values smaller than τA to 0

Quantization. Map x to repr(x) if the induced relative error is smaller than τR
▶ Only store index(repr(x)) ∈ N to gain space
▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 1. “Lossless” truncation and quantization of floats

Ô Methods for real data · Lossless compression 9/15

(1) Any signal smaller than τA can be ignored (2) Relative errors smaller than τR do not perturb the signal d∗

Thresholding. Map all values smaller than τA to 0

Quantization. Map x to repr(x) if the induced relative error is smaller than τR
▶ Only store index(repr(x)) ∈ N to gain space
▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 1. “Lossless” truncation and quantization of floats

Ô Methods for real data · Lossless compression 9/15

(1) Any signal smaller than τA can be ignored (2) Relative errors smaller than τR do not perturb the signal d∗

Thresholding. Map all values smaller than τA to 0

Quantization. Map x to repr(x) if the induced relative error is smaller than τR
▶ Only store index(repr(x)) ∈ N to gain space
▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 1. “Lossless” truncation and quantization of floats

Ô Methods for real data · Lossless compression 9/15

(1) Any signal smaller than τA can be ignored (2) Relative errors smaller than τR do not perturb the signal d∗

Thresholding. Map all values smaller than τA to 0
Quantization. Map x to repr(x) if the induced relative error is smaller than τR

▶ Only store index(repr(x)) ∈ N to gain space
▶ Tradeoff between the size of non-quantized intervals and the size of indexes to store

Trick 2. A the-smaller-the-lighter float format

Ô Methods for real data · Lossless compression 10/15

Observation. The values of the remainder are much smaller
than in the original distance matrix
▶ About 2 orders of magnitude smaller
▶ Combined with absolute thresholding, fewer non-zero digitsw�

-0.005699721︸ ︷︷ ︸
12 chars

τA-thresholding−−−−−−−−−→ -0.005600︸ ︷︷ ︸
9 chars

scientific notation−−−−−−−−−−→ -56-3︸ ︷︷ ︸
5 chars

Trick 2. A the-smaller-the-lighter float format

Ô Methods for real data · Lossless compression 10/15

Observation. The values of the remainder are much smaller
than in the original distance matrix
▶ About 2 orders of magnitude smaller

▶ Combined with absolute thresholding, fewer non-zero digitsw�
-0.005699721︸ ︷︷ ︸

12 chars

τA-thresholding−−−−−−−−−→ -0.005600︸ ︷︷ ︸
9 chars

scientific notation−−−−−−−−−−→ -56-3︸ ︷︷ ︸
5 chars

Trick 2. A the-smaller-the-lighter float format

Ô Methods for real data · Lossless compression 10/15

Observation. The values of the remainder are much smaller
than in the original distance matrix
▶ About 2 orders of magnitude smaller
▶ Combined with absolute thresholding, fewer non-zero digits

w�
-0.005699721︸ ︷︷ ︸

12 chars

τA-thresholding−−−−−−−−−→ -0.005600︸ ︷︷ ︸
9 chars

scientific notation−−−−−−−−−−→ -56-3︸ ︷︷ ︸
5 chars

Trick 2. A the-smaller-the-lighter float format

Ô Methods for real data · Lossless compression 10/15

Observation. The values of the remainder are much smaller
than in the original distance matrix
▶ About 2 orders of magnitude smaller
▶ Combined with absolute thresholding, fewer non-zero digitsw�

-0.005699721︸ ︷︷ ︸
12 chars

τA-thresholding−−−−−−−−−→ -0.005600︸ ︷︷ ︸
9 chars

scientific notation−−−−−−−−−−→ -56-3︸ ︷︷ ︸
5 chars

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

METHOD. “Lossless” compression of pairwise genome distances

Ô Methods for real data · Lossless compression 11/15

Trick 3. Lossy biology-informed thresholding

Ô Methods for real data · Lossy compression 12/15

For similar enough genomes, taxonomy can be defined with distance thresholds1

▶ e.g., Species ≡ >90% ANI ≡ <0.05 Mash distance
Strain ≡ >99.99% ANI ≡ <0.0001 Mash distance

Storing sparse matrices. Matrices can be represented in O(#(non-zero-entries)) space

1Rodriguez et. al. mBio, 2024

Trick 3. Lossy biology-informed thresholding

Ô Methods for real data · Lossy compression 12/15

For similar enough genomes, taxonomy can be defined with distance thresholds1

▶ e.g., Species ≡ >90% ANI ≡ <0.05 Mash distance
Strain ≡ >99.99% ANI ≡ <0.0001 Mash distance

Storing sparse matrices. Matrices can be represented in O(#(non-zero-entries)) space

1Rodriguez et. al. mBio, 2024

Trick 3. Lossy biology-informed thresholding

Ô Methods for real data · Lossy compression 12/15

For similar enough genomes, taxonomy can be defined with distance thresholds1

▶ e.g., Species ≡ >90% ANI ≡ <0.05 Mash distance
Strain ≡ >99.99% ANI ≡ <0.0001 Mash distance

Storing sparse matrices. Matrices can be represented in O(#(non-zero-entries)) space

1Rodriguez et. al. mBio, 2024

Trick 3. Lossy biology-informed thresholding

Ô Methods for real data · Lossy compression 12/15

For similar enough genomes, taxonomy can be defined with distance thresholds1

▶ e.g., Species ≡ >90% ANI ≡ <0.05 Mash distance
Strain ≡ >99.99% ANI ≡ <0.0001 Mash distance

Storing sparse matrices. Matrices can be represented in O(#(non-zero-entries)) space

1Rodriguez et. al. mBio, 2024

Trick 3. Lossy biology-informed thresholding

Ô Methods for real data · Lossy compression 12/15

For similar enough genomes, taxonomy can be defined with distance thresholds1

▶ e.g., Species ≡ >90% ANI ≡ <0.05 Mash distance
Strain ≡ >99.99% ANI ≡ <0.0001 Mash distance

Storing sparse matrices. Matrices can be represented in O(#(non-zero-entries)) space

1Rodriguez et. al. mBio, 2024

Trick 3. Lossy biology-informed thresholding

Ô Methods for real data · Lossy compression 12/15

For similar enough genomes, taxonomy can be defined with distance thresholds1

▶ e.g., Species ≡ >90% ANI ≡ <0.05 Mash distance
Strain ≡ >99.99% ANI ≡ <0.0001 Mash distance

Storing sparse matrices. Matrices can be represented in O(#(non-zero-entries)) space

1Rodriguez et. al. mBio, 2024

METHOD. Lossy compression of pairwise genome distances

Ô Methods for real data · Lossy compression 13/15

METHOD. Lossy compression of pairwise genome distances

Ô Methods for real data · Lossy compression 13/15

¡ Results

“Lossless” compression of pairwise distance matrices

¡ Results 14/15

Data.
10k Streptococcus pneumoniae genomes from the 661k collection1 .
Distances estimated using Mash2 with k = 21, s = 104 , which gives
τA = 10−6 , τR = 10−2

We observed similar results on other species
- 10k Neisseria gonorrhoeae
- 10k Escherichia coli
and with other distance estimators
- Skani3
- Dashing4

Software.
The whole pipeline is implemeted in the (prototype) tool phdcomp
Several components are of independent interest (eg. nwk2phy5)

1Blackwell et. al. PLOS Biology, 2021. 2Ondov et. al. Genome Biology, 2016. 3 Shaw et. al. Nature Methods, 2023. 4Baker et. al. Genome Biology, 2019.
5https://gitlab.inria.fr/lackerma/nwk2phy

“Lossless” compression of pairwise distance matrices

¡ Results 14/15

Data.
10k Streptococcus pneumoniae genomes from the 661k collection1 .
Distances estimated using Mash2 with k = 21, s = 104 , which gives
τA = 10−6 , τR = 10−2

We observed similar results on other species
- 10k Neisseria gonorrhoeae
- 10k Escherichia coli
and with other distance estimators
- Skani3
- Dashing4

Software.
The whole pipeline is implemeted in the (prototype) tool phdcomp
Several components are of independent interest (eg. nwk2phy5)

1Blackwell et. al. PLOS Biology, 2021. 2Ondov et. al. Genome Biology, 2016. 3 Shaw et. al. Nature Methods, 2023. 4Baker et. al. Genome Biology, 2019.
5https://gitlab.inria.fr/lackerma/nwk2phy

“Lossless” compression of pairwise distance matrices

¡ Results 14/15

Data.
10k Streptococcus pneumoniae genomes from the 661k collection1 .
Distances estimated using Mash2 with k = 21, s = 104 , which gives
τA = 10−6 , τR = 10−2

We observed similar results on other species
- 10k Neisseria gonorrhoeae
- 10k Escherichia coli
and with other distance estimators
- Skani3
- Dashing4

Software.
The whole pipeline is implemeted in the (prototype) tool phdcomp
Several components are of independent interest (eg. nwk2phy5)

1Blackwell et. al. PLOS Biology, 2021. 2Ondov et. al. Genome Biology, 2016. 3 Shaw et. al. Nature Methods, 2023. 4Baker et. al. Genome Biology, 2019.
5https://gitlab.inria.fr/lackerma/nwk2phy

° Conclusion

Conclusion

° Conclusion 15/15

Context. Many downstream analyses rely on pairwise distance matrices, that are
already challenging to store due to their quadratic size

Approach. We aim to leverage the specific structure of genomic data, that can
extensively be explained by the underlying phylogeny

First results.
Theory. Pairwise matrices of genome collections following the infinite sites model can be
stored in linear space supporting constant-time queries
Practice. Lossless compression of 10k s.-pneumo. pairwise matrices with constant-time
random access saves around 70% space

What’s next? Generalization to many-species collections, and larger scale experiments
▶ This is where we expect the subquadraticity to arise

° Conclusion 15/15

G E N S C A L E

Towards subquadratic
data structures for large genome-distance matrices with quick retrieval

Léo Ackermann1, Pierre Peterlongo1, Karel Břinda1

DSB Workshop, 5th March 2025

Thank you for your attention!
Léo Ackermann

Pierre Peterlongo
Karel Břinda

	 Pairwise distance matrices
	 Method for the infinite sites model
	

	 Methods for real data
	
	Foundations
	Lossless compression
	Lossy compression

	 Results
	

	 Conclusion
	

