

WCC presentation:

Public-key encryption from the lattice isomorphism problem

Presenting **Léo Ackermann** (CNRS, Greyc, Caen) Joint work with Adeline Roux-Langlois (CNRS, Greyc, Caen) Alexandre Wallet (Inria, Capsule, Rennes)¹

A strong candidate for post-quantum crypto

▲ Cryptographic threat posed by quantum computers

- Shor's algorithm solves the **discrete log** and **factorisation** problems in quantum polynomial time.
- The advent of reasonnable quantum computers would break current cryptosystems (ECC, RSA).

A strong candidate for post-quantum crypto

▲ Cryptographic threat posed by quantum computers

- Shor's algorithm solves the **discrete log** and **factorisation** problems in quantum polynomial time.
- The advent of reasonnable quantum computers would break current cryptosystems (ECC, RSA).

$m \ref{star}$ The NIST competition (2016 m m m m m 2022)

Three out of four of the first standardized algorithms rely on lattices.

Encryption	≁ Signature
 Crystals-Kyber 	 Crystals-Dilithium
	 Falcon
	SPHINCS+

Many lattice-based (and code-based) proposals within the **extra-round** for **signatures**.

First principles of lattice-based crypto

🔀 Euclidean lattices

A lattice Λ is a discrete additive subgroup of \mathbb{R}^n . It can always be written $\Lambda(\boldsymbol{B}) = \sum_i \boldsymbol{b}_i \mathbb{Z}$.

The bases are not unique, eg. $\Lambda(B) = \Lambda(B)$.

First principles of lattice-based crypto

🔀 Euclidean lattices

A lattice Λ is a discrete additive subgroup of \mathbb{R}^n . It can always be written $\Lambda(\mathcal{B}) = \sum_i \mathbf{b}_i \mathbb{Z}$.

Hard lattice problems

The bases are not unique, eg. $\Lambda(B) = \Lambda(B)$.

First principles of lattice-based crypto

🔀 Euclidean lattices

A lattice Λ is a discrete additive subgroup of \mathbb{R}^n . It can always be written $\Lambda(\mathcal{B}) = \sum_i \mathbf{b}_i \mathbb{Z}$.

The bases are not unique, eg. $\Lambda(B) = \Lambda(B)$.

Hard lattice problems

Computational hardness • $\alpha \in \omega(\sqrt{n}) \Rightarrow \text{runtime} \in 2^{\Omega(n)}$. • $\alpha \in 2^{\Omega(n)} \Rightarrow \text{runtime} \in poly(n)$.

Cryptographic assumption • $\alpha \in poly(n) \Rightarrow runtime \in 2^{\Omega(n)}$.

$$\begin{cases} a_{1,1}s_1 + \cdots + a_{1,n}s_n = b_1 \\ \vdots + \ddots + \vdots = \vdots \\ a_{m,1}s_1 + \cdots + a_{m,n}s_n = b_m \end{cases}$$

Learning With Errors (LWE)

Inhomogeneous Short Integer Solution (ISIS)

$a_{1,1}s_1$	+	• • •	+	<i>a</i> _{1,n} <i>s</i> _n	=	b_1
÷	+	·	+	÷	=	÷
$a_{m,1}s_1$	+	• • •	+	a _{m,n} s _n	=	b_m

Learning With Errors (LWE)

Inhomogeneous Short Integer Solution (ISIS)

← Hardness of LWE and ISIS

Those problems enjoy **worst-case average-case reductions** from hard lattice problems, namely **SVP** and **BDD**.

LWE ≡ Bounded Distance Decoding over Λ = {**x** ∈ Z^m | ∃**s** ∈ Z, **x** = A**s** mod q}.
ISIS ≡ Shortest Vector Problem over Λ = {**s** ∈ Z^m | A^T**s** = **u** mod q}.

Learning With Errors (LWE)

Inhomogeneous Short Integer Solution (ISIS)

← Hardness of LWE and ISIS

Those problems enjoy **worst-case average-case reductions** from hard lattice problems, namely **SVP** and **BDD**.

- LWE \equiv Bounded Distance Decoding over $\Lambda = \{ \mathbf{x} \in \mathbb{Z}^m \mid \exists \mathbf{s} \in \mathbb{Z}, \mathbf{x} = \mathbf{As} \mod q \}.$ • ISIS \equiv Shortest Vector Problem over
 - $\Lambda = \{ \mathbf{s} \in \mathbb{Z}^m \mid \mathbf{A}^\mathsf{T} \mathbf{s} = \mathbf{u} \mod q \}.$

Large variety of constructions

Ranging from simple **encryption** or digital **signature** scheme to **anonymous credentials** and **fully homomorphic encryption**.

Breaking lattice-based crypto

Attacking fundamental lattice problems

SVP Find the *shortest* non-zero vector, of length $\lambda_1(\Lambda) := \min_{\Lambda \setminus \{0\}} ||x||_2$. **BDD** Find *v*, given a target t = v + e, with $v \in \Lambda$ and $||e|| \le \lambda_1(\Lambda)/2$.

The **concrete hardness** of those problems is driven by the **gap** $gap(\Lambda)$ between the **actual shortest length** and the upper bound given by **Gaussian heuristics**.

Breaking lattice-based crypto

Attacking fundamental lattice problems

SVP Find the *shortest* non-zero vector, of length $\lambda_1(\Lambda) := \min_{\Lambda \setminus \{0\}} ||x||_2$. **BDD** Find *v*, given a target t = v + e, with $v \in \Lambda$ and $||e|| \le \lambda_1(\Lambda)/2$.

The **concrete hardness** of those problems is driven by the **gap** $gap(\Lambda)$ between the **actual shortest length** and the upper bound given by **Gaussian heuristics**.

Deceptive aspect of lattice-based crypto

LWE-lattice: $gap(\Lambda) \ge \Omega(\sqrt{n})$. Prime-lattice: $gap(\Lambda) = \Theta(\log(n))$. Hypotheses on **random lattices** and subsequent constructions **barely connect** with the luxuriant litterature on **remarkable lattices**.

Public-key encryption from LIP

- Search Flavours of lattice isomorphisms
 - (Unpractical) Given Λ and Λ' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = O \cdot \Lambda'$.

- Search and the search
 - (Unpractical) Given Λ and Λ' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = O \cdot \Lambda'$.
 - (Search var.) Given **B** and **B**', find (if any) $O \in O(\mathbb{R}^n)$ such that $B = O \cdot B'$.

- Search and the search
 - (Unpractical) Given Λ and Λ' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = O \cdot \Lambda'$.
 - (Search var.) Given **B** and **B**', find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.

- Search Flavours of lattice isomorphisms
 - (Unpractical) Given Λ and Λ' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = O \cdot \Lambda'$.
 - (Search var.) Given **B** and **B**', find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.
 - (Decision var., dLIP) Given **B** and **B**', decide whether $\Lambda(B) \cong \Lambda(B')$ or not.

- Flavours of lattice isomorphisms
 - (Unpractical) Given Λ and Λ' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = O \cdot \Lambda'$.
 - (Search var.) Given **B** and **B**', find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.
 - (Decision var., dLIP) Given **B** and **B**', decide whether $\Lambda(B) \cong \Lambda(B')$ or not.
 - Distinguish var., △LIP) Given B, B₀ and B₁, decide whether ∧(B) ≅ ∧(B₀) or ∧(B) ≅ ∧(B₁).

Flavours of lattice isomorphisms

- (Unpractical) Given Λ and Λ' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = O \cdot \Lambda'$.
- (Search var.) Given **B** and **B**', find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.
- (Decision var., dLIP) Given **B** and **B**', decide whether $\Lambda(B) \cong \Lambda(B')$ or not.
- Distinguish var., △LIP) Given B, B₀ and B₁, decide whether ∧(B) ≅ ∧(B₀) or ∧(B) ≅ ∧(B₁).

LIP hardness

LIP benefits from **worst-case average-case** self-reduction within an instantiation class, and its **connection with the graph isomorphism problem** accounts for its assumed hardness.

LIP flavours

The **public key** consists in any lattice Λ and a basis **B** of O · Λ. The **secret key** is the rotation O.

LIP flavours

The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^T Q U$ for $U \in GL_n(\mathbb{Z})$. The **secret key** is U.

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^T Q U$ for $U \in GL_n(\mathbb{Z})$. The **secret key** is U.
- LIP-based schemes can be instantiated with geometry of **remarkable lattices** (root systems, Barnes-Wall, $\mathbb{Z}^n, ...$): smaller gaps, **better algorithms**.

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^T Q U$ for $U \in GL_n(\mathbb{Z})$. The **secret key** is U.
- LIP-based schemes can be instantiated with geometry of remarkable lattices (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.
- Existing constructions
 - Authentication scheme

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^T Q U$ for $U \in GL_n(\mathbb{Z})$. The **secret key** is U.
- LIP-based schemes can be instantiated with geometry of remarkable lattices (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.
- Existing constructions
 - Authentication scheme
 - Key-encapsulation mecanism

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^T Q U$ for $U \in GL_n(\mathbb{Z})$. The **secret key** is U.
- LIP-based schemes can be instantiated with geometry of remarkable lattices (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.

Existing constructions

- Authentication scheme
- Key-encapsulation mecanism
- Signature (including Hawk submission)

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^T Q U$ for $U \in GL_n(\mathbb{Z})$. The **secret key** is U.
- LIP-based schemes can be instantiated with geometry of remarkable lattices (root systems, Barnes-Wall, Zⁿ, ...): smaller gaps, better algorithms.

Existing constructions

- Authentication scheme
- Key-encapsulation mecanism
- Signature (including Hawk submission)

Q A missing primitive

We propose the first **direct construction** of a PKE relying on **LIP**.

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\begin{array}{ll} \bullet & \mathcal{C} = (0,1)^n, \operatorname{Enc}(0) \sim (D_{\Lambda} \mod \mathcal{C}), \\ & \operatorname{Enc}(1) \sim \mathcal{U}(\mathcal{C}). \end{array}$

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\begin{array}{ll} \bullet & \mathcal{C} = (0,1)^n, \operatorname{Enc}(0) \sim (D_\Lambda \mod \mathcal{C}), \\ & \operatorname{Enc}(1) \sim \mathcal{U}(\mathcal{C}). \end{array}$

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\begin{array}{ll} \bullet & \mathcal{C} = (0,1)^n, \operatorname{Enc}(0) \sim (D_\Lambda \mod \mathcal{C}), \\ & \operatorname{Enc}(1) \sim \mathcal{U}(\mathcal{C}). \end{array}$

Correctness

With overwhelming probability, Enc(1) is far enough from $(0, 1)^n$ vertices.

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\begin{array}{ll} \bullet & \mathcal{C} = (0,1)^n, \operatorname{Enc}(0) \sim (D_\Lambda \mod \mathcal{C}), \\ & \operatorname{Enc}(1) \sim \mathcal{U}(\mathcal{C}). \end{array}$

Correctness

With overwhelming probability, Enc(1) is far enough from $(0, 1)^n$ vertices.

Security

Under ΔLIP_{pke} hypothesis, the scheme is **IND-CPA** secure.

Cryptanalysis of the ΔLIP_{pke} hypothesis

The ΔLIP_{pke} hypothesis seems as strong as ΔLIP : the class restriction **does not improve existing attacks**, and **does not create new ones** neither.

A reasonable conjecture for falsifiability

For $n \ge 85$, there exists at least one unimodular lattice Λ of rank n that verifies $\lambda_1(\Lambda)^2 \ge \sqrt{72n}$.

What could we expect from LIP?

Large $gap(\Lambda)$ on random lattices Hard time with Gaussian sampling Plenty of constructions Approximate variants of hypotheses Small gap(A) on remarkable lattices Easy implementation (eg. Hawk) Only a few constructions Fragile hypotheses

GREYC Inia

Thank you for your attention!

Léo Ackermann Adeline Roux-Langlois Alexandre Wallet

cnrs

WCC presentation:

Public-key encryption from the lattice isomorphism problem

