

WCC presentation:

Public-key encryption from the lattice isomorphism problem

Presenting **Léo Ackermann** (CNRS, Greyc, Caen) Joint work with Adeline Roux-Langlois (CNRS, Greyc, Caen) Alexandre Wallet (Inria, Capsule, Rennes) $¹$ </sup>

A strong candidate for post-quantum crypto

A Cryptographic threat posed by quantum computers

- Þ. Shor's algorithm solves the **discrete log** and **factorisation** problems in quantum polynomial time.
- The advent of reasonnable quantum computers would **break current cryptosystems** (ECC, RSA).

*** Facto**

 \Box $\frac{DLog}{D}$

A strong candidate for post-quantum crypto

A Cryptographic threat posed by quantum computers

- Shor's algorithm solves the **discrete log** and **factorisation** problems in quantum polynomial time.
- The advent of reasonnable quantum computers would **break current cryptosystems** (ECC, RSA).

\bullet The NIST competition (2016 \rightarrow 2022)

Three out of four of the first standardized algorithms **rely on lattices**.

- **Contained a statistic of the contained and the contained and the contact of the cont** Many lattice-based (and code-based) proposals within the **extra-round** for **signatures**.

First principles of lattice-based crypto

5² Euclidean lattices

A lattice Λ is a discrete additive subgroup of $\mathbb{R}^n.$ It can always be written $\mathsf{\Lambda}(\mathcal{B}) = \sum_i \mathcal{b}_i \mathbb{Z}.$

The bases are not unique, eg. $\Lambda(B) = \Lambda(B)$.

First principles of lattice-based crypto

5² Euclidean lattices

A lattice Λ is a discrete additive subgroup of $\mathbb{R}^n.$ It can always be written $\mathsf{\Lambda}(\mathcal{B}) = \sum_i \mathcal{b}_i \mathbb{Z}.$

A. Hard lattice problems

The bases are not unique, eg. $\Lambda(B) = \Lambda(B)$.

First principles of lattice-based crypto

5² Euclidean lattices

A lattice Λ is a discrete additive subgroup of $\mathbb{R}^n.$ It can always be written $\mathsf{\Lambda}(\mathcal{B}) = \sum_i \mathcal{b}_i \mathbb{Z}.$

The bases are not unique, eg. $\Lambda(B) = \Lambda(B)$.

A. Hard lattice problems

Computational hardness • $\alpha \in \omega($ √ $\overline{\mathsf{n}}) \Rightarrow \mathsf{runtime} \in 2^{\Omega(\mathsf{n})}.$ \bullet $\alpha \in 2^{\Omega(n)} \Rightarrow$ runtime \in poly(n).

Cryptographic assumption \bullet $\alpha \in \mathit{poly}(n) \Rightarrow$ runtime $\in 2^{\Omega(n)}.$

$$
\begin{cases}\n a_{1,1}s_1 + \cdots + a_{1,n}s_n = b_1 \\
\vdots + \ddots + \vdots = \vdots \\
a_{m,1}s_1 + \cdots + a_{m,n}s_n = b_m\n\end{cases}
$$

Learning With Errors (LWE)

Inhomogeneous Short Integer Solution (ISIS)

Learning With Errors (LWE)

Inhomogeneous Short Integer Solution (ISIS)

← Hardness of LWE and ISIS

Those problems enjoy **worst-case average-case reductions** from hard lattice problems, namely **SVP** and **BDD**.

• LWE ≡ Bounded Distance Decoding over $\Lambda = {\mathbf{x} \in \mathbb{Z}^m \mid \exists \mathbf{s} \in \mathbb{Z}, \mathbf{x} = \mathbf{A}\mathbf{s} \mod q}.$ • ISIS ≡ Shortest Vector Problem over

$$
\Lambda = \{ \mathbf{s} \in \mathbb{Z}^m \mid \mathbf{A}^T \mathbf{s} = \mathbf{u} \mod q \}.
$$

Learning With Errors (LWE)

Inhomogeneous Short Integer Solution (ISIS)

\leftrightarrow Hardness of LWE and ISIS

Those problems enjoy **worst-case average-case reductions** from hard lattice problems, namely **SVP** and **BDD**.

- LWE ≡ Bounded Distance Decoding over $\Lambda = {\mathbf{x} \in \mathbb{Z}^m \mid \exists \mathbf{s} \in \mathbb{Z}, \mathbf{x} = \mathbf{A}\mathbf{s} \mod q}.$ • ISIS ≡ Shortest Vector Problem over
	- $\Lambda = \{ \mathbf{s} \in \mathbb{Z}^m \mid \mathbf{A}^T \mathbf{s} = \mathbf{u} \mod q \}.$

\clubsuit Large variety of constructions

Ranging from simple **encryption** or digital **signature** scheme to **anonymous credentials** and **fully homomorphic encryption**.

Breaking lattice-based crypto

Attacking fundamental lattice problems

SVP Find the shortest non-zero vector, of length $\lambda_1(\Lambda) := \min_{\Lambda \setminus \{0\}} ||x||_2.$ **BDD** Find v, given a target $t = v + e$, with $v \in \Lambda$ and $||e|| < \lambda_1(\Lambda)/2$.

The **concrete hardness** of those problems is driven by the **gap** gap(Λ) between the **actual shortest length** and the upper bound given by **Gaussian heuristics**.

Breaking lattice-based crypto

Attacking fundamental lattice problems

 $\begin{array}{ll} \mathsf{t} \end{array}$ **BDD** Find v, given a target $t=\mathsf{v}+\mathsf{e},$ with $\mathsf{v}\in\mathsf{\Lambda}$ **SVP** Find the shortest non-zero vector, of length $\lambda_1(\Lambda) := \min_{\Lambda \setminus \{0\}} ||x||_2.$ and $||e|| < \lambda_1(\Lambda)/2$.

The **concrete hardness** of those problems is driven by the **gap** gap(Λ) between the **actual shortest length** and the upper bound given by **Gaussian heuristics**.

2 Deceptive aspect of lattice-based crypto

LWE-lattice: $qap(\Lambda) > \Omega(\sqrt{n}).$ Prime-lattice: $qap(\Lambda) = \Theta(\log(n)).$ Hypotheses on **random lattices** and subsequent constructions **barely connect** with the luxuriant litterature on **remarkable lattices**.

[Public-key encryption from LIP](#page-13-0)

- \blacktriangleright Flavours of lattice isomorphisms
	- (Unpractical) Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = 0 \cdot \Lambda'$.

- **■** Flavours of lattice isomorphisms
	- (Unpractical) Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = 0 \cdot \Lambda'$.
	- (Search var.) Given **B** and **B'**, find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\mathbf{B} = \mathbf{O} \cdot \mathbf{B}'$.

- **■** Flavours of lattice isomorphisms
	- (Unpractical) Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = 0 \cdot \Lambda'$.
	- (Search var.) Given **B** and **B'**, find (if any) $0 \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.

- **■** Flavours of lattice isomorphisms
	- (Unpractical) Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = 0 \cdot \Lambda'$.
	- (Search var.) Given **B** and **B'**, find (if any) $0 \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.
	- (Decision var., dLIP) Given **B** and **B** ′ , decide whether $Λ$ (**B**) \cong $Λ$ (**B'**) or not.

- **■** Flavours of lattice isomorphisms
	- (Unpractical) Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = 0 \cdot \Lambda'$.
	- (Search var.) Given **B** and **B'**, find (if any) $0 \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.
	- (Decision var., dLIP) Given **B** and **B** ′ , decide whether $Λ$ (**B**) \cong $Λ$ (**B'**) or not.
	- (Distinguish var., ∆LIP) Given **B**, **B⁰** and **B1**, decide $\mathsf{whether} \wedge (\mathbf{B}) \cong \wedge (\mathbf{B_0}) \text{ or } \wedge (\mathbf{B}) \cong \wedge (\mathbf{B_1}).$

► Flavours of lattice isomorphisms

- (Unpractical) Given \wedge and \wedge' , find (if any) $O \in \mathcal{O}(\mathbb{R}^n)$ such that $\Lambda = 0 \cdot \Lambda'$.
- (Search var.) Given **B** and **B'**, find (if any) $0 \in \mathcal{O}(\mathbb{R}^n)$, $U \in GL(\mathbb{Z}^n)$ such that $B = O \cdot B' \cdot U$.
- (Decision var., dLIP) Given **B** and **B** ′ , decide whether $Λ$ (**B**) \cong $Λ$ (**B'**) or not.
- (Distinguish var., ∆LIP) Given **B**, **B⁰** and **B1**, decide whether $\Lambda(B) \cong \Lambda(B_0)$ or $\Lambda(B) \cong \Lambda(B_1)$.

\overline{D} LIP hardness

LIP benefits from **worst-case average-case** self-reduction within an instantiation class, and its **connection with the graph isomorphism problem** accounts for its assumed hardness.

D LIP flavours

The **public key** consists in any lattice Λ and a basis **B** of $O \cdot \Lambda$. The **secret key** is the rotation O.

LIP flavours

The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^{\mathsf{T}} Q U$ for $U \in \mathsf{GL}_n(\mathbb{Z}).$ The **secret key** is U.

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^{\mathsf{T}} Q U$ for $U \in \mathsf{GL}_n(\mathbb{Z}).$ The **secret key** is U.
- LIP-based schemes can be instantiated with geometry of **remarkable lattices** (root systems, Barnes-Wall, \mathbb{Z}^n, \ldots): smaller gaps, **better algorithms**.

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^{\mathsf{T}} Q U$ for $U \in \mathsf{GL}_n(\mathbb{Z}).$ The **secret key** is U.
- ð. LIP-based schemes can be instantiated with geometry of **remarkable lattices** (root systems, Barnes-Wall, \mathbb{Z}^n, \ldots): smaller gaps, **better algorithms**.
- \mathbf{F} Existing constructions
	- **Authentication scheme**

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^{\mathsf{T}} Q U$ for $U \in \mathsf{GL}_n(\mathbb{Z}).$ The **secret key** is U.
- ð. LIP-based schemes can be instantiated with geometry of **remarkable lattices** (root systems, Barnes-Wall, \mathbb{Z}^n, \ldots): smaller gaps, **better algorithms**.
- \mathbf{F} Existing constructions
	- **Authentication scheme**
	- **Key-encapsulation mecanism**

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^{\mathsf{T}} Q U$ for $U \in \mathsf{GL}_n(\mathbb{Z}).$ The **secret key** is U.
- ð. LIP-based schemes can be instantiated with geometry of **remarkable lattices** (root systems, Barnes-Wall, \mathbb{Z}^n, \ldots): smaller gaps, **better algorithms**.

\mathbf{F} Existing constructions

- **Authentication scheme**
- **Key-encapsulation mecanism**
- **Signature (including Hawk** submission)

LIP flavours

- The **public key** consists in quadratic forms (Q, Q') such that $Q' = U^{\mathsf{T}} Q U$ for $U \in \mathsf{GL}_n(\mathbb{Z}).$ The **secret key** is U.
- ð. LIP-based schemes can be instantiated with geometry of **remarkable lattices** (root systems, Barnes-Wall, \mathbb{Z}^n, \ldots): smaller gaps, **better algorithms**.

\mathbf{F} Existing constructions

- **Authentication scheme**
- **Key-encapsulation mecanism**
- **Signature (including Hawk** submission)

pk_{Bob}

Û A missing primitive

We propose the first **direct construction** of a PKE relying on **LIP**.

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\mathcal{C}=(0,1)^n$, Enc $(0)\sim(D_\Lambda\mod\mathcal{C}),$ $Enc(1) \sim U(C)$.

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\mathcal{C}=(0,1)^n$, Enc $(0)\sim(D_\Lambda\mod\mathcal{C}),$ Enc(1) $\sim \mathcal{U}(\mathcal{C})$.

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\mathcal{C}=(0,1)^n$, Enc $(0)\sim(D_\Lambda\mod\mathcal{C}),$ $Enc(1) \sim U(C)$.

Correctness

With overwhelming probability, Enc(1) is far enough from $(0,1)^n$ vertices.

High-level idea

Follows **Dual-Regev** cryptosystem flavour:

 $\mathcal{C}=(0,1)^n$, Enc $(0)\sim(D_\Lambda\mod\mathcal{C}),$ $Enc(1) \sim U(C)$.

Correctness

With overwhelming probability, Enc(1) is far enough from $(0,1)^n$ vertices.

D Security

Under ∆LIP_{pke} hypothesis, the scheme is **IND-CPA** secure.

Cryptanalysis of the∆**LIPpke hypothesis**

\rightarrow A reasonable hypothesis

The ∆LIPpke hypothesis seems as strong as ∆LIP: the class restriction **does not improve existing attacks**, and **does not create new ones** neither.

\triangleright A reasonable conjecture for falsifiability

For $n \ge 85$, there exists at least one unimodular lattice Λ of rank n that verifies $\lambda_1(\Lambda)^2 \geq \sqrt{72n}.$

What could we expect from LIP?

Large gap(Λ) on random lattices Hard time with Gaussian sampling Plenty of constructions Approximate variants of hypotheses Small gap(Λ) on remarkable lattices Easy implementation (eg. Hawk) Only a few constructions Fragile hypotheses

GEYC *CA* **AMACC** *CALC* **CALC**

Thank you for your attention!

Léo Ackermann Adeline Roux-Langlois Alexandre Wallet

CNTS

17th June 2024

WCC presentation:

Public-key encryption from the lattice isomorphism problem

