

Towards space-efficient

data structures for large genome-distance matrices with quick retrieval

Léo Ackermann¹, Pierre Peterlongo¹, Karel Břinda¹

¹ Inria, Genscale, Rennes

29th November 2024

Efficient computation of distance matrices Sketching (e.g., Mash⁵, Dashing⁶) and parallel computing make it.

Sketching (e.g., Mash⁵, Dashing⁶) and parallel computing make it tractable

Storage of genome distances is challenging

Size of bacterial collections increases exponentially

eg. AllTheBacteria¹: 4M genomes, 23TB

Storage of genome distances is challenging

Size of bacterial collections increases exponentially

S Generic matrix compression techniques

Matrix-specific compression techniques are restricted to sparse and low-rank matrices, and are **not directly applicable**

This work focuses on the subquadratic storage of pairwise distance matrices

This work focuses on the subquadratic storage of pairwise distance matrices

Many variants can be framed

Dynamicity. Whether the structure can(not) be updated without recomputing everything

This work focuses on the subquadratic storage of pairwise distance matrices

Many variants can be framed

- **Dynamicity.** Whether the structure **can(not) be updated** without recomputing everything
- Accuracy. Whether the structure stores exact or approximate distances

This work focuses on the subquadratic storage of pairwise distance matrices

Many variants can be framed

- **Dynamicity.** Whether the structure **can(not) be updated** without recomputing everything
- Accuracy. Whether the structure stores exact or approximate distances
- Operability. A set of operations to interact with the data structure, with constraints e.g., random access, sequencial access, nothing, ...

This work focuses on the subquadratic storage of pairwise distance matrices

Many variants can be framed

- **Dynamicity.** Whether the structure **can(not) be updated** without recomputing everything
- Accuracy. Whether the structure stores exact or approximate distances
- Operability. A set of operations to interact with the data structure, with constraints e.g., random access, sequencial access, nothing, ...

• Focus of our preliminary work (this talk)

- I. Restricted to a simplified model of evolution
 - 1. Lossless static data structure for pairwise distances with constant time random access
- II. On a 10k collection of *Streptococcus pneumoniae*
 - 2. Lossless static data structure for pairwise distances (without specific operation)
 - 3. Lossy static data structure for pairwise distances (without specific operation)

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

(because genomes are of *infinite* size)

The evolutionary distance between genomes is defined as the Hamming distance

(the number of loci where the genomes differ)

• The infinite site model⁷

It postulates that mutations always arise during vertical descent, and on a novel locus

(because genomes are of *infinite* size)

00000

A simplistic model, really?

At **small time scale**, real data almost follows such model (eg. clinical outbreak)

The evolutionary distance between genomes is defined as the Hamming distance

(the number of loci where the genomes differ)

Objective. Compute $\delta(C, E)$ (naive algo. in linear time)

1. Expressing $\delta(C, E)$ with root-to-node distances $\delta_T(C, E) = \operatorname{rtn}(C) + \operatorname{rtn}(E) - 2 * \operatorname{rtn}(\operatorname{Ica}(C, E))$ \rightarrow Storing root-to-node distances requires linear space

Objective. Compute $\delta(C, E)$ (naive algo, in linear time)

1. Expressing $\delta(C, E)$ with root-to-node distances $\delta_T(C, E) = \operatorname{rtn}(C) + \operatorname{rtn}(E) - 2 * \operatorname{rtn}(\operatorname{lca}(C, E))$

 \rightarrow Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time

Objective. Compute $\delta(C, E)$ (naive algo, in linear time)

1. Expressing $\delta(C, E)$ with root-to-node distances $\delta_T(C, E) = \operatorname{rtn}(C) + \operatorname{rtn}(E) - 2 * \operatorname{rtn}(\operatorname{lca}(C, E)) \rightarrow$ Storing root-to-node distances requires linear space

Recover Lowest Common Ancestor in constant time
 Lowest Common Ancestors are range minima

Eulerian pathxyAyByxztCtDtzEzxEulerian depth01212101232321210

 $lca(C,E) = Path[argmin_{k \in [index(C), index(E)]} Depth[k]]$

 \rightarrow Storing Path and index requires linear space

Objective. Compute $\delta(C, E)$ (naive algo, in linear time)

Objective. Compute $\delta(C, E)$ (naive algo. in linear time)

1. Expressing $\delta(C, E)$ with root-to-node distances $\delta_T(C, E) = \operatorname{rtn}(C) + \operatorname{rtn}(E) - 2 * \operatorname{rtn}(\operatorname{lca}(C, E)) \rightarrow$ Storing root-to-node distances requires linear space

Recover Lowest Common Ancestor in constant time
 Lowest Common Ancestors are range minima

Eulerian pathxyAyByxztCtDtzEzxEulerian depth01212101232321210

 $lca(C,E) = Path[argmin_{k \in [index(C), index(E)]} Depth[k]]$

 \rightarrow Storing Path and index requires linear space

2.b Range-Minimun Queries on Depth in constant-time

- Store every query in a lookup table
- LUT + LUT for block RMQs

 $O(n^2)$ space O(n) space

📝 Lemma

There exists a linear space data structure that can statically store Hamming pairwise distances of genomes following the *infinite site model* while providing constant time random access

📝 Lemma

There exists a linear space data structure that can statically store Hamming pairwise distances of genomes following the *infinite site model* while providing constant time random access

Proof

For such data, it can be shown that the **Hamming distance** is **additive** Hence the **Neighbor-joining** algorithm **exactly recovers the tree**³

ightarrow Hamming distance between genomes is exactly the tree distance between those genomes

📝 Lemma

There exists a linear space data structure that can statically store Hamming pairwise distances of genomes following the *infinite site model* while providing constant time random access

Proof

For such data, it can be shown that the **Hamming distance** is **additive** Hence the **Neighbor-joining** algorithm **exactly recovers the tree**³

 \rightarrow Hamming distance between genomes is exactly the tree distance between those genomes We **store this tree** using the data structure explained earlier

A phylogeny guided reordering for improved local compressibility

Phylogenetic compression saves orders of magnitude

Running xz on reordered genome collections (BIGSIdata, 661k, AllTheBacteria) **saves** about two orders of magnitude⁹

Phylogenetic compression of pairwise distance matrices

 \rightarrow Phylogenetic compression can be **applied beyond the scope** of [9]

► The *infinite site model*, simplistic, really?

At small time scale, real data almost follows such model

ightarrow Most of the distance signal is explainable by the tree distance

Pairwise distance matrix

★ The infinite site model, simplistic, really?

At small time scale, real data almost follows such model

ightarrow Most of the distance signal is explainable by the tree distance

► The *infinite site model*, simplistic, really?

At small time scale, real data almost follows such model

ightarrow Most of the distance signal is explainable by the tree distance

► The *infinite site model*, simplistic, really?

At small time scale, real data almost follows such model

ightarrow Most of the distance signal is explainable by the tree distance

★ The infinite site model, simplistic, really?

At small time scale, real data almost follows such model

ightarrow Most of the distance signal is explainable by the tree distance

This approach cannot work for lossless compression

The **remainder has a size similar to the original distance**, and does not exhibit strong structure

O Thresholding small values of the reminder matrix based on ANI All values below a threshold are set to zero → from 8 to 1 char in the .phylip format

O Thresholding small values of the reminder matrix based on ANI All values below a threshold are set to zero → from 8 to 1 char in the .phylip format

Increasing threshold = increasing sparsity

O Thresholding small values of the reminder matrix based on ANI All values below a threshold are set to zero → from 8 to 1 char in the .phylip format

Increasing threshold = increasing sparsity

O Thresholding small values of the reminder matrix based on ANI All values below a threshold are set to zero → from 8 to 1 char in the .phylip format

Increasing threshold = increasing sparsity

Increasing threshold = increasing sparsity

Biological meaning of thresholds (for future work)

For similar enough genomes, taxonomy can be defined with distance thresholds¹⁰

e.g., Specie \equiv >90% ANI \equiv <0.05 Mash dist. or Strain \equiv >99.99% ANI \equiv <0.0001 Mash dist.

Pairwise distance matrix

Pairwise distance matrix

Exploiting phylogeny pushes compressibility bundaries

Data

Distance estimator Phylogeny estimator Distance retrieval Compression scheme 10k Streptococcus pneumoniae genomes from the AllTheBacteria¹ collection Mash NJ algorithm, with quicktree¹¹ **new tool** nwk2phy¹² (implements constant-time tree distance retrieval) xz

Conclusion

Conclusion

Context

Many **downstream analyses** rely on **pairwise distance matrices**, that are already challenging to store due to their **quadratic size**

Approach

We aim to leverage the **specific structure** of genomic data, that can extensively be **explained by the underlying phylogeny**

📝 First results

- Theory. Pairwise matrices of genome collections following the *infinite site model* can be stored in linear space supporting constant time queries
- Practice. Phylogeny-aware (lossy) compression of 10k s.-pneumo. pairwise matrices saves over 90% space compared to xz

Future work

Better compressing of the remainder

iterative decomposition, compression techniques for sparse matrices

Theoretical guarantees via tracking of distortion

e.g., $\forall \tau, \forall (x, y), \quad \delta(x, y) \leq \tau \Rightarrow \tilde{\delta}_{\tau}(x, y) \leq \tau$

- Exploring alternative phylogenetic backbones and distances phylogenetic networks, phylogenetic splits; dashing, symetrical difference of kmer sets
- Generalisation to many-species collections

Eventually, distance data structures for **all bacterial genomes** with **monitored distortion**

Thank you for your attention!

Léo Ackermann Pierre Peterlongo Karel Břinda

Towards space-efficient

data structures for large genome-distance matrices with quick retrieval

References

1. AllTheBacteria - all bacterial genomes assembled, available and searchable. Martin Hunt, Leandro Lima, Wei Shen, John Lees, Zamin Iqbal

2. Least squares quantization in PCM. Stuart P. Lloyd

3. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Naruya Saitou, Masatoshi Nei

4. A Statistical Method for Evaluating Systematic Relationships. Robert Sokal, Charles Michener

5. Mash: fast genome and metagenome distance estimation using MinHash. Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H. Bergman, Sergey Koren, Adam M. Phillippy

6. Dashing: fast and accurate genomic distances with HyperLogLog. Daniel N. Baker, Ben Langmead

7. The Number of Heterozygous Nucleotide Sites Maintained in a Finite Population Due to Steady Flux of Mutations. Motoo Kimura

Genome-Scale Algorithm Design Veli Mäkinen, Fabio Cunial, Djamal Belazzougui, Alexandru I. Tomescu
 Efficient and robust search of microbial genomes via phylogenetic compression. K. Břinda, L. Lima, S. Pignotti, N. Quinones-Olvera, K. Salikhov, R. Chikhi, G. Kucherov, Z. Iqbal, M. Baym

10. An ANI gap within bacterial species that advances the definitions of intra-species units. Luis M.

Rodriguez-R, Roth E. Conrad, Tomeu Viver, Dorian J. Feistel, Blake G. Lindner, Stephanus N. Venter, Luis H. Orellana, Rudolf Amann, Ramon Rossello-Mora, Konstantinos T. Konstantinidis

11. https://github.com/khowe/quicktree

12. https://gitlab.inria.fr/lackerma/nwk2phy