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This work focuses on the subquadratic storage of pairwise distance matrices

Many variants can be framed
Dynamicity. Whether the structure can(not) be updated without recomputing everything
Accuracy. Whether the structure stores exact or approximate distances
Operability. A set of operations to interact with the data structure, with constraints
e.g., random access, sequencial access, nothing, . . .

◎ Focus of our preliminary work (this talk)
I. Restricted to a simplified model of evolution

1. Lossless static data structure for pairwise distances with constant time random access

II. On a 10k collection of Streptococcus pneumoniae
2. Lossless static data structure for pairwise distances (without specific operation)
3. Lossy static data structure for pairwise distances (without specific operation)
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∞ The infinite site model7

It postulates that mutations always arise during vertical descent, and on a novel locus
(because genomes are of infinite size)

® A simplistic model, really?
At small time scale, real data almost
follows such model
(eg. clinical outbreak)

The evolutionary distance between genomes is defined as the Hamming distance
(the number of loci where the genomes differ)
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Objective. Compute δ(C, E)
(naive algo. in linear time)

1. Expressing δ(C, E) with root-to-node distances
δT(C, E) = rtn(C) + rtn(E)− 2 ∗ rtn(lca(C, E))

→ Storing root-to-node distances requires linear space

2. Recover Lowest Common Ancestor in constant time
2.a Lowest Common Ancestors are range minima

Eulerian path xyAyByxzt CtDtzE zx
Eulerian depth 012121012 323212 10

lca(C,E)=Path[argmink∈[index(C),index(E)] Depth[k]]

→ Storing Path and index requires linear space
2.b Range-Minimun Queries on Depth in constant-time

Store every query in a lookup table O(n2) space
LUT + LUT for block RMQs O(n) space
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� Lemma
There exists a linear space data structure that can statically store Hamming pairwise
distances of genomes following the infinite site model while providing constant time
random access

� Proof
For such data, it can be shown that the Hamming distance is additive
Hence the Neighbor-joining algorithm exactly recovers the tree3

→ Hamming distance between genomes is exactly the tree distance between those genomes
We store this tree using the data structure explained earlier ■



CONTRIB 1. O(n)-space lossless storage with O(1)-random access for ISM data

Ó Contrib 1. Method for a simple evolutionary model · Contribution 6/14

� Lemma
There exists a linear space data structure that can statically store Hamming pairwise
distances of genomes following the infinite site model while providing constant time
random access

� Proof
For such data, it can be shown that the Hamming distance is additive
Hence the Neighbor-joining algorithm exactly recovers the tree3

→ Hamming distance between genomes is exactly the tree distance between those genomes

We store this tree using the data structure explained earlier ■



CONTRIB 1. O(n)-space lossless storage with O(1)-random access for ISM data

Ó Contrib 1. Method for a simple evolutionary model · Contribution 6/14

� Lemma
There exists a linear space data structure that can statically store Hamming pairwise
distances of genomes following the infinite site model while providing constant time
random access

� Proof
For such data, it can be shown that the Hamming distance is additive
Hence the Neighbor-joining algorithm exactly recovers the tree3

→ Hamming distance between genomes is exactly the tree distance between those genomes
We store this tree using the data structure explained earlier ■



Ô Contrib 2. Methods for real data (lossless)



Phylogenetic compression

Ô Contrib 2. Methods for real data (lossless) · Foundations 7/14

� A phylogeny guided reordering for improved local compressibility

Genome collection
...

â Phylogenetic compression saves orders of magnitude
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All values below a threshold are set to zero → from 8 to 1 char in the .phylip format

5 Biological meaning of thresholds (for future work)
For similar enough genomes, taxonomy can be defined with distance thresholds10

e.g., Specie ≡ >90% ANI ≡ <0.05 Mash dist. or Strain ≡ >99.99% ANI ≡ <0.0001 Mash dist.
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¡ Results 12/14

Data 10k Streptococcus pneumoniae genomes from the AllTheBacteria1 collection
Distance estimator Mash
Phylogeny estimator NJ algorithm, with quicktree11

Distance retrieval new tool nwk2phy12 (implements constant-time tree distance retrieval)
Compression scheme xz

89.8 MB

68.0 MB

-24.4% 
space

pairwise matrix
+ xz

pairwise matrix
+ reordering + xz

Lossless compression

109 MB

+60.3% 
space

pairwise matrix
+ decomposition

+ 0.0001 threshold
+ xz

68.0 MB

pairwise matrix
+ reordering + xz

-90.4% 
space

pairwise matrix
+ decomposition
+ 0.005 threshold

+ xz

-99.7% 
space

pairwise matrix
+ decomposition
+ 0.05 threshold

+ xz
Lossy compression

6.53 MB 176 kB
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ò Context
Many downstream analyses rely on pairwise distance matrices, that are already
challenging to store due to their quadratic size

� Approach
We aim to leverage the specific structure of genomic data, that can extensively be
explained by the underlying phylogeny

� First results
Theory. Pairwise matrices of genome collections following the infinite site model can be
stored in linear space supporting constant time queries
Practice. Phylogeny-aware (lossy) compression of 10k s.-pneumo. pairwise matrices saves
over 90% space compared to xz



Future work
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Better compressing of the remainder
iterative decomposition, compression techniques for sparse matrices

Theoretical guarantees via tracking of distortion
e.g., ∀τ,∀(x, y), δ(x, y) ≤ τ ⇒ δ̃τ (x, y) ≤ τ

Exploring alternative phylogenetic backbones and distances
phylogenetic networks, phylogenetic splits ; dashing, symetrical difference of kmer sets

Generalisation to many-species collections

Eventually, distance data structures for all bacterial genomes
with monitored distortion
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Towards space-efficient
data structures for large genome-distance matrices with quick retrieval

Léo Ackermann1, Pierre Peterlongo1, Karel Břinda1
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≈ +

Thank you for your attention!
Léo Ackermann

Pierre Peterlongo
Karel Břinda
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